摘要
利用一维波动方程行波解的形式,通过变量替换,再引入双曲正切函数作为独立变量并利用其独特的微分关系给变换,将扩散方程简化为常微分方程,由此得出它的解。此解可做为物理学中非线性方程的实例,尽管不是所有的非线性波动方程都可以用此法来处理,但它缩短了线性和非线性波动理论之间的距离。
The article makes use of traveling wave solution of one dimentional undulant equation, a series of alternation is given by alternating and introducing hypertangent as a new variable, and then makes use of its infinitesimal connections, reaction-diffusion equation be simplified into ordinary infinitesimal equation and its solution is obtained. The solution can be an instance of nonlinear equation in physics. The treatment method is not fit for all of nonlinear equations, but the distance between linear undulant theory and nonlinear undulant theory is shortened.
出处
《河北北方学院学报(自然科学版)》
2005年第6期22-24,共3页
Journal of Hebei North University:Natural Science Edition
关键词
非线性方程
行波解
变换
双曲正切函数
nonlinear equation
traveling wave solution
ahernate, hypertangent