期刊文献+

球形机器人的跳跃运动分析 被引量:5

Jumping movement analysis of spherical robot
下载PDF
导出
摘要 球形机器人除了能进行滚动运动外,还可以实现跳跃运动。跳跃运动方式与滚动运动方式的结合,可以扩大其活动范围,进而提高球形机器人的机动性和灵活性,拓展其应用领域。因而球形机器人的跳跃运动是一种重要的运动方式。在分析球形机器人滚动行走的基础上,推导出了球形机器人的起跳条件;利用拉格朗日方程得到了球形机器人跳跃运动微分方程;通过求解该跳跃运动微分方程得到了球形机器人跳跃高度和跳跃长度的公式。最后,对球形机器人的跳跃运动进行了仿真。这些工作的完成为球形机器人跳跃运动的进一步研究打下了基础。 Besides the spherical robot could carrying out rolling movement, it could still realize jumping movement. The combination of mode of jumping motion and mode of rolling mo tion could enlarge its range of movement, and thus enhanced the mobility and flexibility of spherical robot to develop its domain of application. As a result the jumping movement of spherical robot is a kind of important mode of motion. On the basis of analyzing the rolling walking of spherical robot, this paper derived the condition of taking off, obtained the differential equation of jumping movement of spherical robot by the use of Lagrange equation, and gained the formulae of jumping height and jumping length of spherical robot by means of solving the differential equation of this jumping movement. Finally, this paper carried out simulation on the jumping movement of spherical robot. The completion of these jobs laid a foundation for further study on the jumping movement of spherical robot.
出处 《机械设计》 CSCD 北大核心 2006年第3期28-30,共3页 Journal of Machine Design
基金 国家自然科学基金资助项目(50175005)
关键词 球形机器人 跳跃 动力学 spherical robot jump dynamics
  • 相关文献

参考文献5

  • 1Amir Homayoua Javadi A,Puyan Mojabi.Introducing august:a novel strategy for an omnidirectional spherical rolling robot[C].Proc.IEEE Int.Conf.on Robotics and Automation,2002. 被引量:1
  • 2Carlo Camicia,Fabio Conticelli,Antonio Bicchi.Nonholonomic kinematics and dynamics of the sphericle[C].Proc.IEEE Int.Conf.on Intelligent Robot and Systems,2000. 被引量:1
  • 3Ranjan Mukherjee,Mark A.Minor,Jay T Pukrushpan.Motion planning for a spherical mobile robot:revisiting the classical ballplate problem[J].Transactions of the ASME,DECEMBER2002,124:502-511. 被引量:1
  • 4肖爱平,孙汉旭,谭月胜,马国伟,赵勇.一种球形机器人运动轨迹规划与控制[J].机器人,2004,26(5):444-447. 被引量:24
  • 5Toshiro Yamanaka,Shigeki Nakaura,Mitsuji Sampei.Hopping motion analysis of ‘ superball’-like spherical robot based on feedback control[C].Proceedings of the 2003 IEEE/RSJ int.Conference on Intelligent Robots and Systems,Las Vegas,Nevada,October 2003. 被引量:1

二级参考文献7

  • 1梅凤翔.非完整系统力学基础[M].北京:北京工业学院出版社,1985.. 被引量:70
  • 2Halme A, Suomela J, Schonberg T, et al. Motion control of a spherical mobile robot[A]. 4th IEEE International Workshop on Advanced Motion Control AMC'96[C]. Japan: IEEE, 1996. 259 -274. 被引量:1
  • 3Bicchi A, Balluchi A, Prattichizzo D, et al. Introducing the ''SPHERICAL'': an experimental testbed for research and teaching in nonholonomy[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Albuquerque, NM: IEEE, 1997.26 被引量:1
  • 4Ferriere L, Raucent B, Campion G. Design of omnimobile robot wheels[ A ]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Minneapolis, MN: IEEE, 1996.3664 - 3670. 被引量:1
  • 5Bhattacharya S, Agrawal S K. Spherical rolling robot: a design and motion planning studies[A]. Proceedings of the IEEE InternationalConference on Robotics and Automation[C]. San Francisco: IEEE,2000.835 - 839. 被引量:1
  • 6Homayoun A, Javadi A, Mojabi P. Introducing August: a novel strategy for an omnidirectional spherical rolling robot[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Washington DC: IEEE, 2002. 3527 - 3533. 被引量:1
  • 7Murray R R, Li Z, Sastry S S. A Mathematical Introduction to Robotic Manipulation[M]. Boca Raion, FL: CRC Press, 1993. 被引量:1

共引文献23

同被引文献29

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部