摘要
对于函数级数,研究其和函数的解析性质很重要,但函数级数必须具有一致收敛性,而判断函数级数的一致收敛性往往是比较困难的.对∞∑n=1(-1)(n+1)u[a,b]上单调减少并收敛于0,则∑∞n=1(-1)(n+1)un(x)型函数级数就一致收敛.
It is of great importance to study the analytic quality of sum function in function series. However, this study should be bssed on the fact that the series must have consistent convergence, the judgment of which is rather difficult. So far as the type of series ∑n=1^∞(-1)^(n+1)un(x) is concerned, only if the function u. (x) ( n =1,2,3 ,…) continues at the interval [ a,b], and the function chain un (x)reduces and converges to 0, the type of series will achieve consistent convergence.
出处
《衡水学院学报》
2006年第1期8-9,共2页
Journal of Hengshui University
关键词
函数级数
一致收敛
一致有界
和函数
function series
consistent convergence
uniformly bound
sum function