期刊文献+

CB填充聚合物导电复合体系熔体聚集态结构演化 被引量:1

Developement of Melt Agglomerate Structure in Conductive Polymer Composites Filled with Carbon Black
下载PDF
导出
摘要 The study on the correlation between time dependence of electrical resistivity and dynamic storage modulus for carbon black(CB) filled polymer composites was carried out. With the increase of the dynamic storage modulus(G′) as well as the normalized dynamic storage modulus(G′_ c /G′_ p), the volume resistivity(ρ) deceases with the increase of annealing time beyond the T_ m of the composites. It is believed that this phenomenon can be used for examining the development of agglomerate structure of filled composites and illustrating the micro-mechanism of the NTC behavior. It is assumed that melting treatment to CB filled composites results in a higher modulus and lower resistivity due to more even local dispersion of the particles and formation of perfect CB network structure within the matrix. The study on the correlation between time dependence of electrical resistivity and dynamic storage modulus for carbon black(CB) filled polymer composites was carried out. With the increase of the dynamic storage modulus(G') as well as the normalized dynamic storage modulus( G'c/G'p ), the volume resistivity(p) deceases with the increase of annealing time beyond the Tm of the composites. It is believed that this phenomenon can be used for examining the development of agglomerate structure of filled composites and illustrating the micro-mechanism of the NTC behavior. It is assumed that melting treatment to CB filled composites results in a higher modulus and lower resistivity due to more even local dispersion of the particles and formation of perfect CB network structure within the matrix.
作者 吴刚 郑强
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2006年第3期583-585,共3页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:50133020 50125312)资助.
关键词 炭黑填充导电复合体系 NTC行为 动态粘弹性 CB filled conductive composite NTC behavior Dynamic viscoelasticity
  • 相关文献

参考文献13

二级参考文献21

  • 1Medalia A. L.. Rubber Chem. Technol.[J], 1985, 59: 432-454 被引量:2
  • 2Allak H. M., Brinkman A. W., Woods J.. J. Mater. Sci.[J], 1993, 28: 117 -123 被引量:2
  • 3Kohler F.. US Patent, 3 243 753[P], 1966 被引量:2
  • 4Pechovskaya K., Rubber Chem. Technol.[J], 1962, 35: 877-883 被引量:1
  • 5Kawmoto H., Sichel E. K. Ed.. Carbon Black-polymer Composites[M], New York: Marcel, Dekker, 1982: 92 被引量:1
  • 6HU Xiao, LI Xi-qiang. J. Polym. Sci.(Part B, Polym. Physics)[J], 2002, 40: 2 354-2 363 被引量:1
  • 7Kazamierczak T., Galeski A.. J. Appl. Polym. Sci.[J], 2002, 86: 1 337-1 350 被引量:1
  • 8Jokela K., Serimaa R., Torkkeli M.. J. Polym. Sci.(Part B. Polym. Physics)[J], 2002, 40: 1 539-1 555 被引量:1
  • 9Narkis M., Ram A., Flashner F.. Ploym. Eng. Sci.[J], 1978, 18: 649-653 被引量:1
  • 10Medalia A. I.. Rubber Chem. Technol.[J], 1986, 59: 432-441 被引量:2

共引文献18

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部