期刊文献+

构建支持向量机-偏最小二乘法为药物构效关系建模 被引量:13

Error-based Nonlinear Partial Least Squares Method Embedded Least Squares Support Vector Machine and Its Application to Qantitative Structure-Activity Relationships
下载PDF
导出
摘要 为研究药物构效关系积累样本数据的过程中,需为小样本建模。此时较易造成过拟合,影响模型的预测性能和稳定性。为此可用偏最小二乘(PLS)法从样本数据中成对地提取最优成分,消除自变量间的复共线性,并有效的降维,然后应用最小二乘支持向量机对成对成分进行非线性回归,并以基于误差修正的策略调整,使之更有效地表达自、因变量间的非线性关系。由此构建为EB-LSSVM-PLS算法,所建模型的预报精度高,稳定性良好。将其应用于新型黄烷酮类衍生物的QSAR建模,效果令人满意,其泛化性能优于其它方法。 A new nonlinear partial least squares algorithm embedded least squares support vector machine (LSSVM) into the regression framework of partial least squares(PLS) method was proposed. In this approach, LSSVM was used to fit the nonlinear inner relations between PLS components, thus a multi-input multi-output nonlinear modeling task was decomposed into linear outer relations and simple nonlinear inner relations that were performed by a number of single-input single-output LSSVM models. By using the universal approximation property of LSSVM, the PLS modeling method was generalized to a non-linear framework. Subsequently, to increase PLS components interpretative capability, the error-based weights updating procedure in the PLS input outer model was deduced and implemented in the LSSVM-PLS regression framework. Finally, the EB- LSSVM-PLS was applied to quantitative structure-activity relationships modeling of flavanone compound. Compared with the other three approach partialeast squares regression (PLSR), EB-neural network (NN)PLS and LSSVM, the EB-LSSVM-PLS approach has better prediction performance and stability.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2006年第2期263-266,共4页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.20276063) 浙江省重点科技计划项目(No.2004C21SA120002)
关键词 最小二乘支持向量机 偏最小二乘 基于误差修正 小样本 构效关系 泛化性能 Least squares support vector machine, partial least squares, error-based updating, small sample,quantitative structure-activity relationships, generalization performance
  • 相关文献

参考文献11

二级参考文献27

  • 1蔡煜东,宫家文,甘骏人,姚林声.应用人工神经网络方法预测油气[J].石油地球物理勘探,1993,28(5):634-638. 被引量:14
  • 2于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 3郭进,刘洪霖,黄铁生,陈念贻.计算机辅助材料设计的偏最小二乘法-人工神经网络研究[J].计算机与应用化学,1996,13(4):253-256. 被引量:6
  • 4Gonzalez G D. Soft sensors for processing plants [A]. Proceeding of the Second International Conference on Intelligent Processing and Manufacturing of Materials [C], 1999, 1:59 -69. 被引量:1
  • 5Gonzalez G D, Redard J P, Barrera R, Fernandez M. Issues in soft-sensor applications in industrial plants [A]. Proceeding of IEEE International Symposium on Industrial Electronics [C], 1994, 380 -385. 被引量:1
  • 6Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1995. First Edition. 被引量:1
  • 7Vapnik V N. The Nature of statistical Learning Theory [M]. New York: Springer-Verlag, 1999. Second Edition. 被引量:1
  • 8Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters, 1999, 19(3): 293-300. 被引量:1
  • 9Bishop C M. Neural Networks for Pattern Reorganization [M].Oxford University Press, 1995. 被引量:1
  • 10VapnikVN 张学工 译.统计学习理论的本质(第二版)[M].北京:清华大学出版社,2000.. 被引量:3

共引文献135

同被引文献184

引证文献13

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部