摘要
通过利用改进的有理德卡斯特里奥算法求得正则有理n次Bezier曲线各点处的切矢,由此得到各点的单位法矢量,应用于求原始曲线的等距曲线,从而巧妙地解决了原始正则有理n次Bezier曲线上各点的单位法矢量难求的困难。该方法几何意义明显,算法简洁,实践效果比较好,最后本文给出了两个实例。
In this paper, we obtain the tanget vector at each point of the regular rational Be ziter curve of degree n by using the improved rational de Casteljau algorithm.Then we can get the unit normal vector at each point of the original curve. So we have Ingeniously overcome the difficulty that the unit normal vector is not easily to be solved at each point. This method has obvious geometric meaning. The algorithm is simple and the result is satisfactory in practice.
出处
《国防科技大学学报》
EI
CAS
CSCD
北大核心
1996年第1期110-113,共4页
Journal of National University of Defense Technology
基金
CAD/CG国家重点实验室基金
关键词
CAGD
等距曲线
算法
有理曲线
BEZIER曲线
CAGD, CURBS, rational Be zier curve of degreen, offset curve, rational de Casteljau algorithm