期刊文献+

综述:知识系统的V&V技术 被引量:2

A Survey on Verification and Validation of Knowledge-based Systems
下载PDF
导出
摘要 知识库的异常是影响整个知识系统性能的重要因素之一,因此必须对获取的知识进行校验。本文综述了知识库异常检测和验证的相关研究,给出了异常知识的分类及其危害性,分析了知识库验证困难的原因,介绍了用于知识库验证的静态和动态方法,列举了国际上几个著名的知识库验证工具,并对知识库验证的研究进行了展望。 Knowledge abnormities including inconsistency, redundancy and incompletities are the main reasons to affect the knowledge-based system efficiencies,so the knowledge verification and validation (V&V)are necessary. The related works about knowledge V&V are summarized in this paper. The knowledge abnormities are classified and their harms to knowledge-based system are discussed. However, the knowledge V&V are usually difficult since knowledge repre- sentation, update and scale. The static and dynamic methods for knowledge V&V are listed respectively, and some known tools for knowledge V&V are compared. Finally,tile future research for knowledge V&V is discussed.
出处 《计算机科学》 CSCD 北大核心 2006年第2期19-24,共6页 Computer Science
基金 自然科学基金的资助(#60073017和#60273019) 科技部重大基础项目基金(#2001CCA03000和#2002DEA30036)的资助。
关键词 知识系统 知识异常 知识表示 知识验证 Knowledge-based system Knowledge abnormities,Knowledge representation Knowledge verification Knowledge validation
  • 相关文献

参考文献8

二级参考文献47

共引文献97

同被引文献41

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部