期刊文献+

基于多支持向量机分类器的增量学习算法研究 被引量:7

Research on incremental learning algorithm with multiple support vector machine classifiers
下载PDF
导出
摘要 为了将一般增量学习算法扩展到并行计算环境中,提出一种基于多支持向量机分类器的增量学习算法.该算法根据多分类器对新增样本集的分类结果,以样本到分类超平面的平均距离为条件重新构造支持向量集更新分类器,直到所有分类器的分类精度满足指定阈值.实验结果表明了该算法的可行性和正确性. In order to extend common incremental learning algorithms into a parallel computation setting, an incremental learning algorithm with multiple support vector machine classifiers is proposed. According to the results of multiple classifiers, new samples were selected to be support vectors sets by computing the distance mean of the samples to the hyperplane, until all classifiers were updated and all classification accuracies met the given threshold. The experiment results on test data sets prove the feasibility and validity of the proposed algorithm.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第1期103-106,共4页 Journal of Harbin Engineering University
基金 黑龙江省自然科学基金资助项目(F2005-02)
关键词 多支持向量机分类器 支持向量 增量学习 平均距离 multiple support vector machine classifiers incremental learning algorithm
  • 相关文献

参考文献6

二级参考文献7

  • 1[1]RATSABY J. Incremental learning with sample queries[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(8) :883-888. 被引量:1
  • 2[2]WANG E H C, KUH A. A smart algorithm for incremental learning[J]. International Joint Conference on Neural Net works, 1992,3:121 - 126. 被引量:1
  • 3[3]VAPNIK V. The nature of statistical learning theory[M]. New York: Springer- Verlag, 1995. 被引量:1
  • 4[4]CHRISTOPHER J,BURGES C. A tutorial on support vector machines for pattern recognition[M]. Boston: Kluwer Academic Publishers, 1998. 被引量:1
  • 5[6]CHANG Chihchung, LIN Chihjen. LIBSVM: a library for support vector machines [DB/OL]. http://citeseer. nj. nec.com/chang01 libsvm. html, 2001 - 09 - 07. 被引量:1
  • 6Schlkopf B,IEEE Transactions on Signal Processing,1997年,45卷,11期 被引量:1
  • 7Christopher J.C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition[J] 1998,Data Mining and Knowledge Discovery(2):121~167 被引量:1

共引文献136

同被引文献47

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部