摘要
研究在Radon测度下一类双重退化抛物型方程(|x|νu)t-div(|X|v|Du|P-2Du)=μ.其中μ∈M(Q)=[Cc(Q)](Radon测度集),Q=(0,T)×Ω,Ω是中的有界开集且O∈Ω;v≥0,v≥0P>1.利用正则化方法.通过引入逼迟子问题列及其求解un对un作先验估计和紧性的讨论,并研究梯度Dun的收敛性等,我们证明了当P>Pc时此方程弱解在带权的Sobolev空间的存在性。
This paper deals with a quasilinear doubly degenerate parabolic equation with measures as data: (|x|u)l- div(|x|v |Du|p-2Du) =μ, where μ∈M(Q) = [Cc(Q)](set of Radon -measures), Q = (0, T)×Ω,Ω is an open bounded subset of RN, 0∈Ω; v≥0, v≥0, P≥1.By introducing a sequence of approximating problems and their solutions {un} , and getting priori estimates、rngularity and compactness of {un}, from the convergence of Dun, for P>Pc we prove the existence of weak solution in a weighted Sobolev space.
出处
《南昌大学学报(理科版)》
CAS
1996年第1期70-79,共10页
Journal of Nanchang University(Natural Science)
基金
国家教委留学回国人员科研资助
江西省自然科学基金
关键词
退化抛物型方程
弱解
先验估计
收敛性
拉冬测度
radon-measure, degenerate parabolic equation, weak solution, priori estimate, convergence