期刊文献+

运动性失语症患者听觉通道语言加工的功能性磁共振特征 被引量:5

fMRI characteristics of acoustic language processing in patients with Broca aphasias
下载PDF
导出
摘要 目的:用脑功能成像技术探讨运动性失语症患者发病不同时期在听觉性语言加工过程中脑区的激活特征,以揭示运动性失语的发生及发展过程。方法:所选病例为南方医科大学珠江医院神经内科及康复科2004-09/2005-06住院的3名运动性失语患者,用功能性磁共振成像技术比较3名运动性失语患者在早期和慢性阶段与正常人在听觉性语言理解过程中的脑区激活特征。功能图像的采集分静息和刺激两个过程,静息和刺激活动交替。静息状态时受试者静息平躺;活动期聆听语言声音刺激,语言刺激结束时立即在内心做判断。结果:3名患者和5名正常受试者均进入结果分析。①患者在发病1个月内对简单句的听理解能力保持完好,但不能说话和书写。7个月后患者可以说简短的句子,能正确回答提问。②正常受试者在听觉性语言加工阶段左颞上中回、联合区、Wernicke区、额中下回及右侧颞中上回均有不同程度激活,尤以左侧颞上中回激活强度最大。③运动性失语症患者在4周内左侧颞叶,右侧颞中上回、右侧额中下回均有不同程度激活,以右侧颞中上回激活强度最大,7个月后左右侧颞上回、左侧Wernicke区及左侧额区病灶周围有明显激活。运动性失语症患者在早期对听觉性语言理解过程中主要表现语言的表达障碍,而在慢性阶段,语言的理解及表达功能进一步改善。结论:语言理解过程同时激活语言接受区和表达区。脑损伤早期,远隔阻断效应的“去除”恢复了语言功能,与右半球的激活有关。语言功能的后期恢复可能与功能重组有关,优势半球具有更大的作用。 AIM: To identify the neural networks and related features of processing acoustic sentences in Broca aphasic patients with fMRI. METHODS: The patterns of brain activity of 3 Broca aphsic inpatients, who were selected from the Department of Neurology and Department of and Rehabilitation, Zhujiang Hospital of Seuthem Medical University between September 2004 and June 2005, after stroke at acute and chronic stages were dynamically compared with 5 normal controls during covertly processing acoustic sentences with the same fMRI paradigm. Functional imaging was alternately collected in the two epoches of processing and rest. The subjects were requested to quietly lie in the period of rest, and carefully listen to the language stimuli (incomplete sentences) at the language processing stage, and immediately covertly judged the stimuli to complete the sentences. RESULTS: All the 3 patients and 5 normal subjects were involved in the analysis of results. ① Within 1 month after attack, the patients maintained good listening comprehension to simple sentences, but could not speak and write. After 7 months, the patients could speak simple and short sentences, and could correctly answer the questions. ② The normal subjects had activations of left superior and middle temporal gyri, union area, "Wernicke area, middle and inferior frontal gyri and right superior and middle temporal gyri to different extents at the language processing stage, especially that the activated intensity of left superior and middle temporal gyri was the greatest. ③ Within 4 weeks, there were activations of left temporal lobe, right superior and middle temporal gyri, right middle and inferior frontal gyri to different extents in the Broca aphasic patients, and the activated intensity of right superior and middle temporal gyri was the greatest. After 7 months, there were obvious activations of left and right superior temporal gyri, left Wemieke area and the area around left frontal focus. The aphasic patients had expressive disorders in the
出处 《中国临床康复》 CSCD 北大核心 2006年第6期1-3,共3页 Chinese Journal of Clinical Rehabilitation
基金 广东省自然科学基金博士启动项目资助(05300463)~~
  • 相关文献

参考文献8

  • 1Goodglass H.Understanding Aphasia.San Diego,California:Cademic Press1993. 被引量:1
  • 2Braun AR,Guillemin A,Hosey L,et al.The neural organization of discourse:an H2 15O-PET study of narrative production in English and American sign language.Brain 2001;124(Pt 10):2028-44. 被引量:1
  • 3Paulesu E,Goldacre B,Scifo P,et al.Functional heterogeneity of left inferior frontal cortex as revealed by fMRI.Neuroreport 1997;8(8):2011-7. 被引量:1
  • 4常时新,冯敢生,孔祥泉,张向群,于群,熊茵,刘定西.简单与复杂手指运动的fMRI对比分析[J].临床放射学杂志,2002,21(1):13-15. 被引量:28
  • 5Kohler E,Keysers C,Umilta MA,et al.Hearing sounds,understanding actions:action representation in mirror neurons.Science 2002;297(5582):846-8. 被引量:1
  • 6Blasi V,Young AC,Tansy AP,et al.Word retrieval learning modulates right frontal cortex in patients with left frontal damage.Neuron 2002;36(1):159-70. 被引量:1
  • 7Rosen HJ,Petersen SE,Linenweber MR,et al.Neural correlates of recovery from aphasia after damage to left inferior frontal cortex.Neurology 2000;55(12):1883-94. 被引量:1
  • 8Perani D,Cappa SF,Tettamanti M,et al.A fMRI study of word retrieval in aphasia.Brain Lang 2003;85(3):357-68. 被引量:1

二级参考文献8

  • 1[8]Ramsey NF, Tallent K, van Gelderen P,et al. Reproducibility of human 3D fMRI brain maps acquired during a motor task. Hum Brain Map, 1996, 4:113 被引量:1
  • 2[1]Nakai T, Matsuo K, Kato C,et al. BOLD contrast on a 3T magnet: Detectability of the motor areas. Journal of Computer Assisted Tomography, 2001, 25:436 被引量:1
  • 3[2]Papke K, Reimer P, Renger B,et al. Optimezed activation of the primary sensorimotor cortex for clinical functional MR imaging. AJNR, 2000, 21:395 被引量:1
  • 4[3]Porro CA, Francescato MP, Cettolo V,et al. Primary motor and sensory cortex activation during motor performance and motor imaging: A functional magnetic resonance imaging study. J Neurosci, 1996, 16:7688 被引量:1
  • 5[4]Ball T, Schreiber A, Feige B,et al. The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage, 1999, 10:682 被引量:1
  • 6[5]Rao SM, Binder JR, Hammeke TA,et al. Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology, 1995, 45:919 被引量:1
  • 7[6]Allison JD, Meador KJ, Loring DW,et al. Functional MRI cerebral activation and deactivation during finger movement. Neurology, 2000, 54:135 被引量:1
  • 8[7]Cettolo V, Francescato MP, Iniani C,et al. Functional mapping of the motor and primary sensorial cortex using magnetic resonance techniques. Radiol Med Torino, 1996, 92:548 被引量:1

共引文献27

同被引文献108

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部