期刊文献+

融合知识和数据的贝叶斯网络构造方法 被引量:3

A Method of Bayesian Network Construction Combining Knowledge and Data
原文传递
导出
摘要 从数据中学习贝叶斯网络往往会因为搜索空间庞大而耗费大量时间.由于贝叶斯网络固有的因果语义,领域专家往往能够凭借自己的经验确定节点之间的因果关系.本文方法充分收集专家的意见,并利用证据理论进行综合,去除无意义的网络结构,然后利用常用的学习算法从数据中继续学习.这种融合知识和数据的贝叶斯网络构造方法利用专家知识来缩小学习算法的搜索空间,避免了盲目搜索,同时也避免了单个专家知识的主观性.实验表明该方法能够有效提高学习效率. Learning the structure of a Bayesian network from data may be time expensive due to huge search space. Because a Bayesian network contains causal semantics, experts can use their knowledge to confirm cause and effect among variables. In this paper, experts' opinions are collected and combined using Dempster-Shafer evidence theory. The network structures without semantics are eliminated, then learning network from data is continued. This method fuses expert knowledge which is used to reduce search space with data to construct a Bayesian network . It avoids the subjective bias of single expert. The experimental results show that this method can improve learning efficiency.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2006年第1期31-34,共4页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.70171033 70471046)
关键词 贝叶斯网络 知识 证据理论 证据组合 Bayesian Network , Knowledge , Dempster- Sharer Evidence Theory , Evidence Combination
  • 相关文献

参考文献11

  • 1史忠植著..知识发现[M].北京:清华大学出版社,2002:402.
  • 2Heekerman D. Bayesian Networks for Data Mining. Data Mining and Knowledge Discovery, 1997, 1(1) : 79-119 被引量:1
  • 3Zhang S Z, Yang N H, Wang X K. Construction and Application of Bayesian Networks in Flood Decision Support System. In: Proc of the 1st International Conference on Machine and Cyhenetics. Beijing, China, 2002, Ⅺ:718-722 被引量:1
  • 4Cooper G F, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning,1992, 9(4): 309-347 被引量:1
  • 5陆汝钤.世纪之交的知识工程与知识科学[M].北京:清华大学出版社,2001.. 被引量:42
  • 6Heckerman D, Geiger D, Chickering D. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data.Machine Learning, 1995, 20(3):197-243 被引量:1
  • 7Wellman M P, Breese J S, Goldman R P. From Knowledge Bases to Decision Models. Knowledge Engineering Review, 1992,7(1): 35-53 被引量:1
  • 8Robinson R W. Counting Unlabeled Acyclic Digraphs. In: Proc of the 5th Australian Conference on Combinatorial Mathematics. Melbourne, Australian, 1976, 28-43 被引量:1
  • 9Chickering D M, Geiger D, Heckerman D, Learning Bayesian Networks:Search Methods and Experimental Results, In:Proc of the 5th International Workshop on Artificial Intelligence and Statistics, Fort Landerdale, USA, 1995, 112-128 被引量:1
  • 10Larranaga P, Poza M, Yurramendi Y, Murga R H, Kuijpers C M H. Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters. IEEE Trans on Pattern Analysis and Machine Intelligence, 1996, 18(9):912-926 被引量:1

二级参考文献2

共引文献43

同被引文献66

引证文献3

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部