期刊文献+

基于小波分析的子带特征提取与选择方法 被引量:4

Feature Extraction and Choice Based on MCSF of Wavelet Multi-scale Transform
下载PDF
导出
摘要 在研究了目标图像多尺度小波分解特性的基础上,提出了基于小波多尺度分解子带主成分的特征提取的算法。该算法利用图像在不同尺度的小波变换域中能量局部集中性,选择各子带能量较集中的局部小波系数构成图像目标特征向量。这种特征包含图像目标的主要边缘、纹理、灰度、结构等多种信息。由于对图像目标的特征信息的分布没有任何限制,因而适用于多种类型的图像的特征提取,可以解决单一特征提取方法中必须面对的所提取特征不明显的难点。这种特征向量对噪声有较好的鲁棒性。 Based on an analysis of the wavelet malfi-scale transform in target image, this paper puts forward a new method to extract the main features of the transform. It, in terms of the energy concentricity of the image's wavelet coefficients, selected the parts with concentrated energy to construct the feature vectors, which include most of the edge, texture, luminance and structure features. As there is no limit to the distribution of the image feature information, the method can be used in many kinds of image feature extraction, thus solving the problem of feature illegibility with which the single-feature extraction is confronted. In the experiment, normal white noises with different ranges were added to the images and the result approves that the feature vectors are robust to noise.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2006年第1期85-89,共5页 Journal of National University of Defense Technology
关键词 小波多尺度分解 图像处理 特征提取 子带主成分 wavelet multi-scale transform image processing feature extraction MCSF(main coefficient of sub-frequency)
  • 相关文献

参考文献7

二级参考文献15

  • 1李德仁,邵巨良.集多分辨率分析与信息融合的航空影像中房屋的自动识别[J].模式识别与人工智能,1994,7(3):234-240. 被引量:4
  • 2贾天旭,郑南宁.基于Bubble小波的多尺度边缘提取[J].电子学报,1996,24(4):117-121. 被引量:26
  • 3CastlemanKennethR.数字图像处理[M].北京:电子工业出版社,1999.. 被引量:1
  • 4[4]Oraintara S, Tran T D, et al. Lattice Structure for Regular Paraunitary Linear-phase Filterbanks and M-band Orthogonal Symmetric Wavelets [J].IEEE Trans. Signal Processing, 2001,49:2659-2672. 被引量:1
  • 5[5]Soman A K, Vaidyanathan P P,Nguyen T Q.Linear Phase Paraunitary Filter Banks: Theory, Factorizations and Designs [J]. IEEE Trans. Signal Processing, 1993,41:3480-3495. 被引量:1
  • 6[6]Lawton W, Lee S L,Shen Z. An Algorithm for Matrix Extension and Wavelet Construction [J].Math. Computation, 1996,65:723-737. 被引量:1
  • 7[7]Adams W W, Loustaunau P. Introduction to Grobner Bases. Graduate Studies in Mathematics [M].American Mathematical Society, Providence, R.I., 1994. 被引量:1
  • 8[8]Basu S,Choi H M. Hermite Reduction Methods for Generation of a Complete Class of Linear-phase Perfect Reconstruction Filter Banks-part I: Theory [J].IEEE Trans. Circuits and System-Ⅱ Analog and Digtal Signal Processing, 1999,46:434-447. 被引量:1
  • 9[9]Belogay E,Wang Y. Compactly Supported Orthogonal Symmetric Scaling Functions [J]. Appl. Compput. Harmon. Anal., 1999,7:137-150. 被引量:1
  • 10[1]Daubechies I. Orthonormal Bases of Compactly Supported Wavelets [J]. Comm. Pure Appl. Math., 1988,41:990-996. 被引量:1

共引文献27

同被引文献45

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部