期刊文献+

公交车竞争方案的数学模型

Mathematical model of project for busing competition
下载PDF
导出
摘要 研究公交车竞争方案的数学模型.通过计算每种汽车的总客运量,逐步分析了竞争问题的整体情况.为了使得公交车在竞争中获胜,通过久期方程和经验方程确定了公交车的数量和等车区间.最后,建立了上述问题的数学模型.显然,本模型的意义绝对不止于此类问题,而可以广泛应用于所有在时间维度上存在竞争的相关问题. The mathematical model of the project for busing competition is studied. By calculating the total passengers in each class of bus, the global condition of the competition problem is analyzed step by step. In order to make a bus win in the competition, the number and waiting intervals of the bus are determined by the secular equation and emperical equation. Finally ,the math model is established. Obviously,this model can not only be used in these problems, but also be used in a wide class of problems about time dimensional competition.
出处 《应用科技》 CAS 2006年第3期32-34,58,共4页 Applied Science and Technology
基金 哈尔滨工程大学基础研究基金资助项目(HEUF04012) 哈尔滨工程大学学生科技立项基金资助项目(E01)
关键词 公交车竞争 久期方程 经验方程 数学模型 busing competition long time equation emperical equation mathematical model
  • 相关文献

参考文献8

  • 1FRANK R, GIORDANO, MAURICE D, et al. Fox, Mathematical Modeling Third Edition [ M ]. London: Thomson Learning, 2004. 被引量:1
  • 2SCOTT A. Numerical analysis of a time-headway bus route model [ J]. Physica A: Statistical Mechanics and its Applications, 2003,328: 261 -273. 被引量:1
  • 3DIRK L,QUDHEUSDEN V,ZHU W. Trip frequency scheduling for bus route management in Bangkok [ J]. European Journal of Operational Research, 1995,83 (3) : 439 - 451. 被引量:1
  • 4FURTH P G,WILSON N H M. Setting frequencies on bus routes : Theory and practice [J].Transportation Research Record, 1981,818:1-7. 被引量:1
  • 5GUPTA A I, VRAT P. Simulation model for optimal frequency of buses on a route : A case study in scientific management of transport systems [ M ]. Amsterdam : North-Holland, 1981. 被引量:1
  • 6WOI,F D E ,SCHRECKENBERG M, BACHEM A. Traffic and Granular Flow[ M ]. Singapore : WorldScientic, 1996. 被引量:1
  • 7TAKASHI N. Kinetic clustering and jamming transitions in a car-following model for bus route [ J ]. Physica A , 2000,287:302 - 312. 被引量:1
  • 8RAY D, SttAULP I,. The one-period bus touring problem:Solved by an effective heuristic for the orienteering tour problem and improvement algorithm [ J ]. European Journal of Operational Research, 2000,127:69 - 77. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部