摘要
研究公交车竞争方案的数学模型.通过计算每种汽车的总客运量,逐步分析了竞争问题的整体情况.为了使得公交车在竞争中获胜,通过久期方程和经验方程确定了公交车的数量和等车区间.最后,建立了上述问题的数学模型.显然,本模型的意义绝对不止于此类问题,而可以广泛应用于所有在时间维度上存在竞争的相关问题.
The mathematical model of the project for busing competition is studied. By calculating the total passengers in each class of bus, the global condition of the competition problem is analyzed step by step. In order to make a bus win in the competition, the number and waiting intervals of the bus are determined by the secular equation and emperical equation. Finally ,the math model is established. Obviously,this model can not only be used in these problems, but also be used in a wide class of problems about time dimensional competition.
出处
《应用科技》
CAS
2006年第3期32-34,58,共4页
Applied Science and Technology
基金
哈尔滨工程大学基础研究基金资助项目(HEUF04012)
哈尔滨工程大学学生科技立项基金资助项目(E01)
关键词
公交车竞争
久期方程
经验方程
数学模型
busing competition
long time equation
emperical equation
mathematical model