摘要
一个(k,n)门限秘密共享方案允许把一个秘密S分成n份Si(1≤i≤n),每一份交由一个用户Pi,使得任意k个或多于k个用户联合起来可以恢复秘密S,而任意少于k个用户却不能。在现实生活中,它有着非常广泛的应用。文章介绍了Shamir秘密共享方案,并设计了一种新的基于线性方程组求解的门限秘密共享方案。该方案满足完备、理想特性;与Shamir门限方案相比,其安全性相当;但在计算、重构以及更新共享时更有效。
A (k, n) threshold secret sharing scheme is a method of splitting a secret S into shares Si(1≤i≤n) and distributing them to users Pi so that any group of k or more users can pool their shares together to recover S but no group of k-1 or fewer users can do so. It is widely employed in the real world. In this paper, the Shamir's secret sharing scheme is simply introduced, and a new threshold secret sharing scheme based on solving the linear equations is presented. This new scheme is perfect and ideal. Compared with the Shamir's threshold scheme, it is far more efficient to compute, reconstruct and renew the shares with equivalent levels of security.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第2期164-168,共5页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(60573171)
安徽省青年教师科研基金资助项目(2005JQ1036)
安徽大学计算机学院创新团队资助项目
关键词
门限方案
秘密共享
信息率
完备
threshold scheme
secret sharing
information rate
perfection
ideal