期刊文献+

力觉临场感系统中操作环境动力学的小波神经网络模型 被引量:2

Research on the Dynamic Model of Operating Environment in Force Telepresence System
下载PDF
导出
摘要 在力觉临场感系统中机器人操作环境经常是非线性的和未知的。为使本地操作者了解环境特性,需对操作环境进行建模。为此,进一步研究力觉临场感系统中机器人操作环境动力学模型,提出一种新的基于小波神经网络的环境非线性动力学模型的建立方法,分析网络的拓扑结构,给出网络参数训练和初始化方法。采用引入动量项的最速下降法训练网络权值、尺度因子和平移因子,将小波网络参数的初始化与小波类型、小波时频参数和学习样本等联系起来。结果表明,采用小波神经网络的力觉临场感系统中操作环境模型优于同等规模的BP网络,具有训练方法收敛速度更快、非线性逼近能力更强及建模精度更高等优点。 The operating environment in force telepresence system is often nonlinear and unknown. In order to enable local operator to sense the environment, it is necessary to building model. For this reason, the dynamic model of operating environment is further researched and a kind of new building method of dynamic model of operating environment in force telepresence system based on wavelet neural network (WNN) is presented. Geometrical structure of the network is analyzed and the methods of network parameters training and initialization are given. The weights of network ,scale factor and displacement factor are studied by the steepest descent method, and the network parameters initialization integrates with the wavelet type, time frequency parameters of wavelet and the training samples. The results show that the proposed wavelet neural network provides better approximation ability and higher precision and faster training speed than the BP neural network when used in building model of operating environment in force telepresence system.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第1期14-18,共5页 Chinese Journal of Scientific Instrument
基金 江苏省高等学校自然科学基金(04KJD140033)资助项目。
关键词 机器人 力觉临场感 操作环境 小波神经网络 建模 Robot Force telepresence Operating environment Wavelet neural network Modeling
  • 相关文献

参考文献14

  • 1Yokokohji Y, Yoshikawa T. Bilateral control of master-slave manipulators for ideal kinesthetic coupling-formulation and experiment [J]. IEEE Transactions on Robotics and Automation, 1994,10(4):605-620. 被引量:1
  • 2Zheng Y F, Yuka Fan. Robot force sensor interacting with environment [J]. IEEE Transactions on Robotics and Automation, 1991, 7(1):156-164. 被引量:1
  • 3Paul R P. Problems and research issues associated with the hybrid control of force and displacement [J].IEEE International Conference on Robot and Automation,1987:1966-1971. 被引量:1
  • 4Raju G J, Sheridan T B. Design issues in 2-port network models of bilateral remote manipulation[J].IEEE International Conference on Robot and Automation, 1989:1316-1321. 被引量:1
  • 5黄惟一,宋爱国.力觉临场感遥控作业系统的研究进展[J].东南大学学报(自然科学版),1995,25(4):112-119. 被引量:13
  • 6陈俊杰,黄惟一,宋爱国.基于虚拟现实的临场感遥控作业系统的研究动向[J].机器人,2000,22(6):514-518. 被引量:12
  • 7Burdea G C. Invited review: the synergy between virtual reality and robotics[J]. IEEE Transactions on Robotics and Automation, 1999, 15(3):400 410. 被引量:1
  • 8杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.. 被引量:151
  • 9Juditsky A, Hjalmarson H, Benveniste A, et al. Nonlinear blank-box modeling in system identification:a unified overview [J]. Automatic,1995,31(12):1691-1724. 被引量:1
  • 10许慧,申东日,陈义俊.一种用于非线性函数逼近的小波神经网络[J].自动化与仪器仪表,2003(6):4-6. 被引量:9

二级参考文献25

共引文献234

同被引文献28

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部