期刊文献+

有限域F2^n上安全椭圆曲线的构造

Construction of the secure elliptic curves over the finite field F2^n
下载PDF
导出
摘要 详细阐述了椭圆曲线密码系统的安全性及其理论,讨论了在有限域F2n上寻找安全椭圆曲线的基本思想,并利用l-adic的基本思想给出了在特征为2的有限域F2n上构造安全椭圆曲线的有效算法,设计实现了该算法并获得了实验结果。所构造的椭圆曲线可提高应用系统的安全性。 The paper introduces the security and the theory of the ECC detailedly and descusses the basic idea for finding the secure elliptic curve in the finite field F2^n, It gives an efficient algorithm to construct the secure elliptic curve over the finite field F2^n, based on the l-adic idea and carries out the algorithm. The elliptic curves obtained in the algorithm is secure, and they can enhance the security of the application systems.
出处 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期103-107,共5页 Journal of Chengdu University of Technology: Science & Technology Edition
基金 成都理工大学研究基金资助项目(2005YG05)
关键词 安全椭圆曲线 离散对数问题 School算法 WEIL descent攻击 有限域 secure elliptic curve discrete logarithm problem School algorithm Weil descent attack finite field
  • 相关文献

参考文献10

  • 1Koblitz N.Elliptic curve cryptosystems[J].Math Comp,1987,48:203-209. 被引量:1
  • 2Miller V.Uses of elliptic curves in cryptography[A].Advances in Cryptology-Proc Crypto'85,Lecture Notes in Comput Sci,vol.218 [C].Berlin:Springer-Verlag,1986.417-426. 被引量:1
  • 3周玉洁,冯登国编著..公开密钥密码算法及其快速实现[M].北京:国防工业出版社,2002:146.
  • 4Menezes A,Okamoto T,Vanstone S.Reducing elliptic curve logarithm to a finite field[J].IEEE Transactions on Information Theory,1993,39:1639-1646. 被引量:1
  • 5Schoof R.Counting points on elliptic curves over finite fields[J].Journal of Theorie des Nombres de Bordeaux,1995,7:219-254. 被引量:1
  • 6Elkies N.Elliptic D and modular curves over finite fields and related computational issues[A].Buell D A,Teitelbaum J T.Coputational Perspective on Number Theory[C].AMS/International Press,1998.21-76. 被引量:1
  • 7Koblitz N.Consturcting elliptic curve cryptosystems in characteristic 2 [A].Advances in Cryptology-Proc Crypto'90,Lecture Notes in Comput Sci,vol.537[C].Berlin:Springer-Verlag,1991.156-167. 被引量:1
  • 8Lang S.Elliptic curves,Diophantine Analysis[M].Berlin:Springer-Verlag,1978. 被引量:1
  • 9Gaudry P,Hess F,Smart N.Constructive and destructive facets of Weil descent on elliptic curves [J].Journal of Cryptology,2002,15(1):19-46. 被引量:1
  • 10Menezes A,Qu M.Analysis of the Weil descent attack of gaudry,Hess and smart[A].Topics in Cryptology-CT-RSA 2001[C].Berlin:Springer-Verlag,2001.308-318. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部