期刊文献+

酿酒酵母木糖代谢工程中辅酶工程的研究进展 被引量:10

Research Progress in Cofactor Engineering of Xylose Metabolism in Recombinant Saccharomyces cerevisiae
下载PDF
导出
摘要 辅酶工程(cofactor engineering)是代谢工程的一个重要分支,它通过改变辅酶的再生途径,达到改变细胞内代谢产物构成的目的。介绍了酿酒酵母(Saccharomyces cerevisiae)木糖代谢工程中,利用辅酶工程解决氧化还原平衡问题的研究进展,包括引入转氢酶系统,增加代谢中可利用的NADPH,实现NADH的厌氧氧化等策略。同时介绍了改变XR、XDH辅酶偏好的研究进展。 Cofactor engineering, a vital part of metabolism engineering, changes the redox cofactor regeneration approach. Its main goal is to rebuild the components of metabolic products. The bioconversion of xylose for the production of ethanol is being studied intensively because ethanol is an alternative energy source and a potential liquid fuel. Saccharomyces cerevisiae has been traditionally used in producing ethanol from fermentable sugars but it cannot utilize xylose, only its isomer xylulose. Introduction of the xylose fermentation pathway from Pichia stipitis into S. cerevisiae enables xylose utilization in recombinant S. cerevisiae, but the ethanol yields of xylose fermentation with recombinant S. cerevisiae has been low and large amounts of the byproduct xylitol are produced. The major reason is that the catabolism of xylose with the fungal pathway leads an imbalance of redox cofactor. The process of the catabolism of xylose requires NADPH and NAD + , both of which have to be regenerated in separated processes. More and more attention has therefore focused on the redox cofactor balance in S. cerevisia. The research progress of cofactor engineering to solve the imbalance of redox cofactor in xylose metabolism recombinant S. cerevisiae was introduced. This included expression of transhydrogenase, increasing the Utilization of NADPH, and achieving the anaerobic reoxidation of NADH. Reversing the cofactor specificity of enzymes is another effective way.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2006年第2期89-94,共6页 China Biotechnology
基金 国家自然科学基金资助项目(50273019 20506015) 国家"973"计划资助项目(2004CB716006)
关键词 辅酶工程 木糖 酒精 酿酒酵母 氧化还原 Cofactor engineering Xylose Ethanol Saccharomyces cerevisiae Redox
  • 相关文献

参考文献17

  • 1张翀,邢新会.辅酶再生体系的研究进展[J].生物工程学报,2004,20(6):811-816. 被引量:21
  • 2Walfridsson M, Bao X, Anderlund M, et al. Ethanolic fermentation of xylose with Saccharomyces cerevlsiae harboring the Thermus thermophilus- xylA gene which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol, 1996,62:4648 - 4651. 被引量:1
  • 3Marko K, Maurice T, Jasper D, et al. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res, 2005, 5:925 -934. 被引量:1
  • 4Jeffries T W, Jin Y S. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol,2004, 63(5) :495 -509. 被引量:1
  • 5Berrios-Rivera S J, Bennett G N, San K Y. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD^ + -dependent formate dehydrogenase.Metab Eng, 2003, 4:217 - 229. 被引量:1
  • 6Berrios-Rivera S J, Bennett G N, San K Y. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng, 2003,4 : 230 - 237. 被引量:1
  • 7Berrios-Rivera S J, San K Y, Bennett G N. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD^ + ratio, and the distribution of metabolites in Escherichia coli. Metab Eng, 2003, 4:238 -247. 被引量:1
  • 8Lopez D F, Kleerebezem M, de Vos, et al. Cofactor engineering: a novel approach to metabolic engineering in Lactococcis lactis by controlled expression of NADH oxidasc. J Bacteriol, 1998, 180:3804 - 3808. 被引量:1
  • 9Jackson B, Peake J, White A. Jackson Structure and mechanism of proton-translocating transhydrogenase. FEBS Lett, 1999, 464 : 1 - 8. 被引量:1
  • 10Anderlund M, Nissen T L, Nielsen J, et al. Expression of the Escherichia coli pntA and pntB genes, encoding nicotinamide nucleotide transhydrogenase, in Saccharomyces cerevisiae and its effect on product formation during anaerobic glucose fermentation. Appl Environ Mierobiol, 1999, 65(6) : 2333-2340. 被引量:1

二级参考文献30

  • 1Huimin Zhao, Wilfred A van der Donk. Recent developments in pyridine nucleotide regeneration. Current Opinion in Biotechnology,2003, 14:421 - 426 被引量:1
  • 2DelecoulServat K, Basseguy R, Bergel A. Membrane electrochemical reactor (MER): application to NADH regeneration for ADH-catalysed synthesis. Chemical Engineering Science, 2002, 57 ( 21 ):4633 - 4642 被引量:1
  • 3Karsten Seelbach, Betlina Riabel, Wemer Hummel et al. A novel,efficient regeneration method of NADPH using a new formate dehydrogenase. Tetrahedron Letters, 1996, 37(9): 1377 - 1380 被引量:1
  • 4Sheldon W May. Applications of oxidoreductases. Current Opinion in Biotechnology, 1999, 10(4) :370 - 375 被引量:1
  • 5Fernanda M Bastos, Tania K Franca, Georgia DC Machado et al.Kinetic modeling of coupled redox enzymatic systems for in situ regeneration of NADPH. Journal of Molecular Catalysis B: Enzymatic, 2002, 19 - 20:459 - 465 被引量:1
  • 6Jean Cantet, Alain Bergel, Maurice Comtat et al. Coupling of the electroenzymatic reduction of NAD + with a synthesis reaction. Enzyme and Microbial Technology, 1996, 18(1) :72 - 79 被引量:1
  • 7Birgit Geueke, Bettina Riebel, Werner Hummel. NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD. Enzyme and Microbial Technology, 2003, 32(2) :205 - 211 被引量:1
  • 8Teresa M Bes, Carlos Gomez-Moreno, Jose M Guisan et al. Selective oxidation: stabilization by multipoint attachment of ferredoxin NADP+ reductase, an interesting cofactor recycling enzyme. Journal of Molecular Catalysis A: Chemical, 1995, 98(3): 161 - 169 被引量:1
  • 9Tadashi Kometani, Hidefumi Yoshii, Ryuichi Matsuno. Large-scale production of chiral alcohols with bakers' yeast. Journal of Molecular Catalysis B: Enzymatic, 1996, 1(2) :45 - 52 被引量:1
  • 10Kathryn M Koeller, Chi-Huey Wong. Enzymes for chemical synthesis. Nature, 2001, 409:234 - 240 被引量:1

共引文献20

同被引文献163

引证文献10

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部