期刊文献+

可积系统的守恒律 被引量:1

Conservation Laws of Integrable Systems
下载PDF
导出
摘要 介绍了一系列的获得无穷守恒律(量)的方法,涉及(1+1)-维连续的和微分差分型可积系统. The paper gives a broad overview of the present methods for finding infinitely many conservation laws of (1 + 1)-dimensional soliton systems, both continuous and discrete.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期19-25,30,共8页 Journal of Shanghai University:Natural Science Edition
基金 国家自然科学基金资助项目(10371070) 上海市教委青年基金资助项目
关键词 可积系统 守恒律 连续系统 离散系统 integrable systems conservation laws continuous systems discrete systems
  • 相关文献

参考文献20

  • 1Hydon P E.Conservation laws of partial difference equations with two independent variables[J].Phys A:Math Gen,2001,34:10 347-10 355. 被引量:1
  • 2Fokas A S.Symmetries and integrability[J].Stud Appl Math,1987,77:253-299. 被引量:1
  • 3Miura R M,Gardner C S,Kruskal M D.Korteweg-de Vries and generalizations Ⅱ.Existence of conservation laws and constants of motion[J].J Math Phys,1968,9:1 204-1 209. 被引量:1
  • 4Ablowitz M J,Ladik J F.Nonlinear differential-difference equations and Fourier analysis[J].J Math Phys,1976,17:1 011-1 018. 被引量:1
  • 5Wadati M,Sanuki H,Konno K.Relationships among inverse method,Backlund transformation and an infinite number of conservation laws[J].Prog Theo Phys,1975,53:419-436. 被引量:1
  • 6Zakharov V,Shabat A.Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[J].Sov Phys JETP,1972,34:62-69. 被引量:1
  • 7Konno K,Sanuki H,Ichikawa Y H.Conservation laws of nonlinear evolution equation[J].Prog Theo Phys,1972,52:886-889. 被引量:1
  • 8Tsuchida T,Wadati M.The coupled modified Korteweg-de Vries equations[J].J Phys Soc Jpn,1998,67:1 175-1 187. 被引量:1
  • 9Wadati M.Transformation theories for nonlinear discrete systems[J].Prog Theo Phys Supp,1976,59:36-63. 被引量:1
  • 10Wadati M,Watanabe M.Conservation laws of a Volterra system and nonlinear self-dual network equation[J].Prog Theo Phys,1977,57:808-811. 被引量:1

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部