期刊文献+

Banach空间中渐近非扩张映象的修正Reich-Takahashi型迭代法的强收敛性 被引量:2

On the Strong Convergence of the Modified Reich-Takahashi Type Iteration Method for Asymptotically Nonexpansive Mappings in Banach Spaces
下载PDF
导出
摘要 设E是具有一致正规结构的实Banach空间,其范数是一致Gateaux可微的.设D 是E的非空有界闭凸子集,T:D→D是渐近非扩张映象.该证明了,在一些适当的条件下,修正的Reich-Takahashi型迭代法强收敛到渐近非扩张映象T的不动点. Let E be a real Banach space with uniform normal structure, whose norm is uniformly Gateaux differentiable. Let D be a nonempty bounded closed convex subset of E and T : D → D be an asymptotically nonexpansive conditions, the modified Reich-Takahashi type mapping. It is shown that under some suitable iteration method converges strongly to a fixed point of T.
作者 曾六川
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第1期39-44,共6页 Acta Mathematica Scientia
基金 高等学校优秀青年教师教学和科研奖励基金 上海市高校科技发展基金(部分) 上海市科委重大项目基金(部分)资助
关键词 不动点 渐近非扩张映象 修正的Reich-Takahashi 型迭代法 一致正规结构 一致 Gateaux 可微范数 Fixed point Asymptotically nonexpansive mapping Modified Reich-Takahashi type iteration method Uniform normal structure Uniformaly Gateaux differentiable norm.
  • 相关文献

参考文献11

  • 1Goebel K,Kirk W A.A fixed point theorem for asymptotically nonexpansive mappings.Proc Amer Math Soc,1972,35(1):171-174. 被引量:1
  • 2Chang S S.Some convergence theorems for asymptotically nonexpansive mappings in Banach spaces.To appear.. 被引量:1
  • 3张石生,徐裕光,何昌.Banach空间中渐近非扩张映象的收敛性定理[J].数学学报(中文版),2003,46(4):665-672. 被引量:11
  • 4Deimling K.Nonlinear Functional Analysis.Berlin:Springer-Verlag,1985. 被引量:1
  • 5Asplund E.Positivity of duality mappings.Bull Amer Math Soc,1967,73:200-203. 被引量:1
  • 6Bynum W L.Normal structure coefficients for Banach spaces.Pacif J Math,1980,86:427-436. 被引量:1
  • 7Lim T C,Xu H K.Fixed point theorems for asymptotically nonexpansive mappings.Nonlinear Anal TMA,1994,22(11):1345-1355. 被引量:1
  • 8Zeng L C.On the existence of fixed points and nonlinear ergodic retractions for Lipschitzian semigroups without convexity.Nonlinear Anal TMA,1995,24:1347-1359. 被引量:1
  • 9Reich S.Product formulas,nonlinear semigroups and accretive operators.J Funct Anal,1980,36:147-168. 被引量:1
  • 10Chang S S,Cho Y J,Lee B S,et al.Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces.J Math Anal Appl,1998,224:149-165. 被引量:1

二级参考文献13

  • 1Goebel K, Kirk W. A., A fixed point theorem for asymptoticlly nonexpansive mappings, Proc. Amer. Math.Soc., 1972, 35(1): 171-174. 被引量:1
  • 2Deimling K., Nonlinear functional analysis, Berlin: Springer-Verlag, 1985. 被引量:1
  • 3Shimizu T., Takahashi W., Strong convergence theorem for asymptotically nonexpansive mappings, Nonlinear Anal. TMA, 1996, 26: 265-272. 被引量:1
  • 4Reich S., Some problems and results in fixed point theorem, Contem. Math., 1983, 21: 179-187. 被引量:1
  • 5Reich S., Strong covergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal.Appl., 1980, 75: 287-292. 被引量:1
  • 6Shioji N., Takahashi W., Strong convergence of approximated sequence for nonexpansive mappings, Proc.Amer. Math. Soc.. 1997. 125: 12: 3641-3645. 被引量:1
  • 7Shimizu T., Takahashi W., Strong convergence to common fixed points of familise of nonexpansive mappings,J. Math. Anal. Appl.. 1997. 211: 71-83. 被引量:1
  • 8Shioji N., Takahashi W., Strong convergence threoms for asymptotically nonexpansive semigroups in Hilbert spaces, Nonlinear Anal. TMA. 1998. 34: 546-543. 被引量:1
  • 9Wittmann R., Approximation of fixed point of nonexpansive mappings, Arch. Math., 1992, 58: 486--491. 被引量:1
  • 10Chang S. S., Some problems and results in the study of nonlinear ayalysis, Nonlinear Anal. TMA, 1997,30(7): 4197-4208. 被引量:1

共引文献10

同被引文献18

  • 1曾六川.ASYMPTOTIC BEHAVIOR FOR COMMUTATIVE SEMIGROUPS OF ALMOST ASYMPTOTICALLY NONEXPANSIVE TYPE MAPPINGS[J].Acta Mathematica Scientia,2006,26(2):246-254. 被引量:1
  • 2Blum E, Oetti W. From optimization and variational inequalities to equilibrium problems. Math Student, 1994, 63:123-145. 被引量:1
  • 3Combettes P L, Hirstoaga S A. Equilibrium programms in Hilbert spaces. J Nonlinear Convex Anal, 2005, 6:117-136. 被引量:1
  • 4Moudafi A. Second-order differential proximal methods for equilibrium problems. J Inequal Pure Appl Math, 2003, 4:1-8. 被引量:1
  • 5Takahashi W, Zembayashi K. Strong and weak convergence theorems for equilibrium problems and rela- tively nonexpansive mappings in Banach spaces. Nonlinear Anal, 2009, 70:45-57. 被引量:1
  • 6Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J Math Anal Appl, 2007, 331:506-515. 被引量:1
  • 7Qin X L, Shang S M, Su Y F. A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. Fixed Point Theory and Applications, 2008, 2008:1-9. 被引量:1
  • 8Alber Ya I. Metric and Generalized Projection Operators in Banach Spaces: Properties and Applica- tions//Kartsatos A G ed. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York: Marcel Dekker, 1996:15-50. 被引量:1
  • 9Alber Ya I, Reich S. An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panamer Math J, 1994, 4:39-54. 被引量:1
  • 10Reich S. A weak convergence theorem for the alternating method with Bregman distance//Kartsatos A G ed. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York: Marcel Dekker, 1996:313-318. 被引量:1

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部