期刊文献+

各向同性湍流内颗粒碰撞率的直接模拟研究 被引量:14

DIRECT NUMERICAL SIMULATION OF INERTIAL PARTICLE COLLISIONS IN ISOTROPIC TURBULENCE
下载PDF
导出
摘要 对Reλ约为51均匀各向同性湍流内Stk(=τp/Tk)为0-10.0的有限惯性颗粒的碰撞行为进行了直接数值模拟,以研究湍流对有限惯性颗粒碰撞的影响.结果表明,具有一定惯性颗粒的湍流碰撞率完全不同于零惯性的轻颗粒(Stk=0)和可忽略湍流作用的重颗粒(Stk→∞),其变化趋势极其复杂:在Stk为0-1.0之间,颗粒的碰撞率随St的增加而近乎线性地剧烈增长,在Stk≈1.0和3.0(对应的StE=τp/Te≈0.5)附近,颗粒碰撞率出现两个峰值,在Stk>3.0以后,颗粒的碰撞率随惯性增大而逐渐趋向于重颗粒极限;在峰值处,有限惯性颗粒的平均碰撞率的峰值较轻颗粒增强了30倍左右.为进一步分析湍流作用下颗粒碰撞率的影响因素,分别使用可能发生碰撞的颗粒对的径向分布函数和径向相对速度来量化颗粒的局部富集效应和湍流掺混效应,表明Stk≈1.0时局部富集效应最为强烈,使得颗粒的碰撞率出现第1个峰值;湍流掺混效应则随着颗粒Stk的增大而渐近增大;局部富集和湍流掺混联合作用的结果,使得颗粒碰撞率在Stk≈3.0附近出现另一个峰值. In this paper, direct numerical simulations (DNS) were conducted to study particle collisions in stationary isotropic homogeneous turbulent flow, with the aim to investigate the turbulence influence on collision rates of various inertia particles. It is found that the collision behavior of finite-inertia particle is very complicated, both the Saffman &Turner's theory (Stk =τp/τk= 0) and kinetic theory (Stk→∞) can not correctly predict it. For particles of Stk 〈 1.0 the collision rate increases sharply as Stk increases; at Stk -1.0, collision rate reaches a peak value; as Stk continues to increase, collision rate slowly decreases at first and then increases to reach another peak at Stk -3.0 (corresponding to Eulerian integral time scale). For larger particles collision rate decreases slowly to coincide with the kinetic theory as particle inertia continues to increase. Both of the peak value are about 30 times of zero inertia limit. To further understand the mechanism of finiteinertia particle collision in isotropic turbulence, two major effects of turbulent flow on particle collision, namely turbulent mixing effect and preferential concentration effect, are investigated and are represent qualitatively using radial relative velocity 〈|wr|〉 and radial distribution function g(R) of colliding particle pairs, respectively. Both effects tend to increase collision rates, leading to the observed complex behavior. The results showed that preferential concentration effect is the main contribution factor for the peak of particle collision rate near Stk - 1.0, while both preferential concentration effect and turbulent mixing effect contributing to the peak near Stk-3.0, with much stronger turbulent mixing effect herein.
出处 《力学学报》 EI CSCD 北大核心 2006年第1期25-32,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家重点基础研究发展计划(2002CB211600)教育部新世纪创新人才计划(NCET-04-0708)资助项目~~
关键词 各向同性湍流 惯性颗粒 碰撞率 局部富集效应 湍流掺混效应 直接数值模拟 isotropic turbulence, particle collision rate, preferential concentration, turbulent mixing effect, DNS
  • 相关文献

参考文献18

  • 1Sommerfeld M.Validation of a stochastic lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence.Int J Multiphase Flow,2001,27(10):1829~1858 被引量:1
  • 2Crowe CT.On the relative importance of particle-particle collisions in gas-particle flows.In:Proceedings of the Conference on Gas Borne Particles,Paper C78/81,1981.135~137 被引量:1
  • 3Alipchenkov VM,Zaichik LI.Particle collision rate in turbulent flow.Fluid Dynamics,2001,36(4):608~618 被引量:1
  • 4Saffman PG,Turner JS.On the collision of drops in turbulent clouds.J Fluid Mech,1956,1:16~30 被引量:1
  • 5Abrahamson J.Collision rates of small particles in a vigorously turbulent fluid.Chem Eng Sci,1975,30(11):1371~1379 被引量:1
  • 6Williams JJE,Crane RI.Particle collison rate in turbulent flow.Int J Multiphase Flow,1983,9(4):421~435 被引量:1
  • 7Yuu S.Collision rate of small particles in a homogeneous and isotropic turbulence.AICHE,1984,30:802~807 被引量:1
  • 8Kruis FE,Kusters KA.The collision rate of particles in turbulent flow.Chem Eng Comm,1997,158:201~230 被引量:1
  • 9Maxey MR.The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields.J Fluid Mech,1987,174:441~465 被引量:1
  • 10Squires KD,Eaton JK.Preferential concentration of particle by tubulentce.Phys Fluids,1991,3(5):1169~1179 被引量:1

二级参考文献11

  • 1Kallio G A, Reeks M W. A numerical simulation of particle deposition in turbulent boundary layers [ J ]. In J Multiphase Flow, 1989,15:433 - 446. 被引量:1
  • 2Sundaram S, Collins L R. Spectrum of density fluctuations in a particle-fluid system I. Monodisperse shperes [ J ]. Int J Multiphase Flow,1994,20:1021 - 1037. 被引量:1
  • 3Sundaram S, Collins L R. Spectrum of density fluctuations in a particle-fluid system Ⅱ . Polydisperse spheres [ J ]. Int J Multiphase Flow, 1994,20:1039 - 1052. 被引量:1
  • 4hen M, Kontomaris K, Mclaughlin J B. Dispersion, growth, and deposition of coalescing aerosols in a direct numerical simulation of turbulent channel flow [ A ]. Proceedings of the ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition,Hilton Head, SC, USA, 1995. 被引量:1
  • 5Lavieville J, Deutsch E, Simonin O. Large eddy simulation of interactions between colliding particles and a homogeneous isotropic turbulent field [A] .Proceedings of the ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, Hilton Head,SC, USA, 1995. 被引量:1
  • 6Sundaram S, Collins L R. Numerical considerations in simulating a turbulent suspension of finite-vulume particles [ J]. J Comput Phys,1996,124:337 - 350. 被引量:1
  • 7Oesterle B, Petitjean A. Simulation of particle-to-particle interaction in gas-soiid flows [J]. Int J Multiphase Flow, 1993,19:199- 211. 被引量:1
  • 8Chen M, Kontomaris K, Mclaughlin J B. Direct numerical simulation of droplet collisions in a turbulent channel flow. Part I: collision algorithm [ J ]. Iht J Multiphase Flow, 1998,24:1079 - 1103. 被引量:1
  • 9yon Smoluchowski M. Versuch einer mathematischen theorie der koagulationskinetc kolloider losungen [J]. Phys Chem, 1917,92:129. 被引量:1
  • 10Abrahamson J. Collision rates of small particles in a vigorously turbulent fluid [J] .Chem Eng Sci, 1975,30:1371 - 1379. 被引量:1

共引文献11

同被引文献206

引证文献14

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部