期刊文献+

基于加权模糊k近邻方法的蛋白质亚细胞位点预测 被引量:5

Prediction of Protein Subcellular Locations with a Weighted Fuzzy k_NN Algorithm
下载PDF
导出
摘要 蛋白质只有在特定的亚细胞位点(如细胞核、线粒体、细胞质等)才能参与正常的生命活动,因此蛋白质的哑细胞定位信息对于了解其功能有重要的意义。提出一种应用于蛋白亚细胞定位的多模糊k近邻加权投票算法。使用PSI-BLAST搜索得到的PSSM矩阵,以及1~7阶氨基酸对的信息作为输入特征,分别建立了8个模糊k近邻分类器,最后对所有分类器的结果使用加权投票得到最终预测结果。对包含四类亚细胞位置的RH-2427数据集进行jacknife测试,总预测精度达到88.1%,好于包括单一模糊k近邻在内的多种其它预测方法。同时,该方法可以方便地扩展到对包含叶绿体、高尔基体、溶酶体等更多类亚细胞位点的预测。 Subcellular location of proteins is one of the key functional characters because proteins can perform noral biological functions only after they are tvanslocated to corret subcellulnr locutions, In this paper, a novel method based on a weighted fuzzy k-nearest neighbors algorithm has been introduced, in which the position-specific scoring matrix (PSSM) generated from profiles of PSI-BLAST, amino acid composition and 1 to 7 order protein's dipeptide compositions were used. In the method,eight fuzzy K-NN classifiers have been constructed and the final prediction was made by jury voting of these classifiers. With a jackknife test on the EH-2427 data set containing four different subcellular locations, the total prediction accuracy reached 88.1% which was higher than all the other methods including the single fuzzy K- NN method. Moreover, this method can be easily expanded to handle the task of more subcellular location classification, e. g. golgi apparatus, chloroplast, lysosome and other important organelles in living cells.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2006年第1期106-109,共4页 Chinese Journal of Biomedical Engineering
基金 中国科学院知识创新工程重大项目
关键词 模糊k近邻 投票算法 亚细胞定位 生物信息学 weighted fuzzy K-NN subcellular localization machine learning bioinformatics
  • 相关文献

参考文献11

  • 1Chou KC. Review: prediction of protein structural classes and subcellular locations[ J]. Curr. Protein Peptide Sci, 2000,1 : 171-208. 被引量:1
  • 2Murphy lqF, Boland MV, Velliste M. Towards a systematics for protein subcenular location: quantitative description of protein location patterns and automated analysis of fluorescence microscope images[J]. Proc. Int. Conf. Intell. Syst. Mol. Biol, 2000,8:251 -259. 被引量:1
  • 3Nakai K. Protein sorting signals and prediction of subcelluar localization[J]. Adv. Protein Chem, 2000,54 : 277 - 344. 被引量:1
  • 4Nakashima H, Nishikawa K. Discrimination of intracellular and cxtracelluar proteins using amino acid compositon and residue-pair frequencies[J]. J. Mol. Biol, 1994,238:54 - 61. 被引量:1
  • 5Ying Huang, Yanda Li. Prediction of protein subcellular locations using fuzzy κ-NN method[J]. Bioinformatics, 2004,20 : 121 - 128. 被引量:1
  • 6Reinhardt A, Hubbard T. Using neural networks for prediction of the subcellular location of proteins[J]. Nucleic Acids Res,1998,26 :2230 - 2236. 被引量:1
  • 7Lio P, Vannucci M. Wavelet change-point prediction of transmembrane proteins[ J]. Bioinformatics, 2000,16 : 376 - 382. 被引量:1
  • 8Hirokawa T, Boon-Chieng S, Shigeki M. SOSUI: classification and secondary structure prediction system for membrane proteins[J].Bioinformatics, 1998,14 : 378 - 379. 被引量:1
  • 9Keller JM, Gray MR, Givens JA. A fuzzy k-nearest neighbor algorithm[ J]. IEEE Trans. Syst, Man Cybern, 1985,15:580 - 585. 被引量:1
  • 10Jones, DT. Protein Secondary Structure Predietion Based on Position-specific Scoring Matrices[J]. J. Mol, Biol, 1999,292 : 195 - 202. 被引量:1

同被引文献56

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部