期刊文献+

基于配准方法的颅脑CT图像病变信息自动提取算法 被引量:2

Automatic Method of Pathological Information Extraction Based on Registration
下载PDF
导出
摘要 医学图像中病变信息的计算机自动提取是实现计算机智能辅助诊断的关键与难点,本研究的目的就是提出一个解决该难题的算法,称之为PATHOINFER。该算法的基本过程是首先选择一幅具有代表性的模板图像M0和一系列与其相应的正常图像样本Mi,利用非刚性配准分别建立表示“正常图像”灰度变化的灰度均值图谱,表示正常变异的统计概率图谱和反映其解剖结构空间关系的分割模板,以实现对“正常图像”的计算机描述。再通过M0与目标图像S的配准,达到“正常图像”与S在空间关系上的一致,然后通过S与“正常图像”的比较,利用模糊逻辑推理,自动检出S中的病变区域,并实现对其病变特征信息的自动提取。实验结果表明,PATHOINFER算法可自动地检出并分割病变区域,并能够自动地提取包括病变发生部位在内的特征信息,实现了计算机智能辅助诊断研究中病变信息自动提取的难题。 The key process and difficulty to realize computer intelligent auxiliary diagnosis of medical image is how to automatically acquire the pathological information. Our goal in this paper is to put forward a method called PATHOINFER to solve this problem. The basic procedure of this method is as follows. First, a representative normal image M and a series of randomly chosen normal images Mi corresponding to M0 was selected. By non-rigid registration from Mi to M, computerized description of "Normal Images" related to M0 was created, including an average intensity image to describe the intensity variability, a probability atlas to describe structure physiological variability and a segmented and labeled image to describe the relationship of different anatomical structures. Second, "Normal Images" were transformed to the same coordinate systems of pathology image S by registration from M to S. Finally by comparing the S with those registered "Normal Images" utilizing fuzzy logic inferrenee system, the pathologic region was segmented and pathological information was extracted. The experimental results showed that PATHOINFER could automatically segment pathology regions and could easily extract pathological information about pathology and be used to solve the problem of computer intelligent auxiliary diagnosis of medical image.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2006年第1期19-24,共6页 Chinese Journal of Biomedical Engineering
基金 安徽省教委自然科学基金资助项目(2003kj238)
关键词 非刚性配准 病变分割 病变信息提取 计算机智能辅助诊断 non-rigid registration pathological segmentation pathological information extraction computer intelligent auxiliary diagnosis
  • 相关文献

参考文献12

  • 1Sato K, Sugawara K, Narita Y, et al. Consideration of the method of image diagnosis with respect to frontal lobe atrophy[J]. Nuclear Science, IEEE Transactions, 1996,43(6) :3230 - 3239. 被引量:1
  • 2Hartmann SL, Parks MH, Martin PR, et al. Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-from transformations.Ⅱ.Validation on severely atrophied brains[J]. Medical Imaging, IEEE Transactions, 1999, 18(10) : 917 - 926. 被引量:1
  • 3Atkins MS, Orchard J, Tory MK.Evaluation of brain atrophy measures in MRI.Enginecring in Medicine and Biology Society,2001.Proceedings of the 23rd Annual International Conference of the IEEE,2001,1:616-619. 被引量:1
  • 4Woods K, Li F, Chag WC, et al. Model supported image registration and warping for change detection in computer-aided diagnosis. Applied Imagery Pattern Recognition Workshop, 2000.Proceedings. 29th, 2000,180-186. 被引量:1
  • 5Mei C, Kanade T, Rowley HA, et al. Anomaly detection through registration. Computer Vision and Pancrn Recognition, 1998.Proceedings. 1998 IEEE Computer Society Conference, 1998,304-310. 被引量:1
  • 6Mohamed A, Kyriacou SK, Davatzikos C. A statistical approach for estimating brain tumor induccd deformation. Mathematical Methods in Biomedical Image Analysis, 2001. MMBIA 2001. IEEE Workshop, 2001,52 - 59. 被引量:1
  • 7Matesin M, Loncarle S, Petravic D. A rule-based approach to stroke lesion analysis from CT brain images. Image and Signal Processing and Analysis, 2001. ISPA 2001. Proceedings of the 2nd International Symposium, 2001,219 - 223. 被引量:1
  • 8Moon N, Bullitt E, van Leemput K, et al. Model-based brain and tumor segmentation. Pattern Recognition, 2002. Proceedings. 16th International Conference, 2002,1 : 528 - 531. 被引量:1
  • 9Desvignes M, Royackkers N, Revenu M. Sulcal variability in a computerized brain atlas. Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, 1996,2:700- 701. 被引量:1
  • 10Rueckert D, Fmngi AF, Schnabel JA. Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration[J]. Medical Imaging, IEEE Transactions, 2003;22(8) :1014- 1025. 被引量:1

二级参考文献3

  • 1Hongbing Ji,et al.An interactive segmentation method for medical images.Signal Processing,2002 6th International Conference on,2002,Vo11:pp26-30 被引量:1
  • 2Jong-Min Lee,et al.Evaluation of automated and semi-automated skull-stripping algorithms using similarity index and segmentation error.Computers in Biology and Medicine,2003,33(6):495-507 被引量:1
  • 3聂斌.医学图像分割技术及其进展[J].泰山医学院学报,2002,23(4):422-426. 被引量:16

共引文献14

同被引文献12

  • 1李传富,周康源,陈曾胜,黄丹,何力,王庆临.序列颅脑CT图像的颅腔内结构自动化分割[J].中国科学技术大学学报,2006,36(2):148-152. 被引量:10
  • 2Kunio Doi. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential[J]. Computerized Medical Imaging and Graphics, 2007, 31: 198-211 被引量:1
  • 3Yong Fan, Dinggang Shen, Ruben C. Gur, et al. COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements[J]. IEEE Trans on Medical Imaging, 2007, 26(1): 93-105 被引量:1
  • 4Metha SG, Thomas J, Trivedi Y, et al. Evaluation of voxel-based morphometry for focal lesion detection in individuals[J]. Neuroimage, 2003, 20(3): 1438-1454 被引量:1
  • 5Gholipour AL, Kehtarnavaz N, Briggs R, et al. Brain function localization: A survey of image registration techniques[J]. IEEE Trans on Medical Imaging, 2007, 26(4): 427-451 被引量:1
  • 6Mattes D, Haynor DR, Vesselle H, et al. Non-rigid multimodality image registration[J]. In: Medical Imaging 2001: Image Processing. 2001, 1609-1620 被引量:1
  • 7Thirion JP. Non-rigid matching using demons. Proceedings of the 1996 Conference on Computer Vision and Pattern Recognition[J]. San Francisco, US: IEEE, 1996:245-251 被引量:1
  • 8Zhong Xue, Shen Dinggang, Davatzikos C. Determining correspondence in 3D MR brain images using attribute vectors as morphological signatures of voxels[J]. IEEE Trans on Medical Imaging, 2004, 23(10): 1276-1291 被引量:1
  • 9Torsten Rohlfing, Edith V. Sullivan, Adolf Pfefferbaum. Deformation-based brain morphometry to track the course of alcoholism: Differences between intra-subject and inter-subject analysis[J]. Psychiatry Research: Neuroimaging, 2006, 146: 157-170 被引量:1
  • 10陈荻,周平,李传富,周康源.颅脑CT纹理识别中的树结构小波算法研究[J].中国医疗器械杂志,2007,31(4):239-241. 被引量:2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部