期刊文献+

基于平面波算法的二维正方点阵声子晶体禁带研究 被引量:1

A Study of Band Gap for Two Dimensional Phononic Crystal with Square Lattices Based on Plane Wave Algorithm
下载PDF
导出
摘要 声子晶体能够产生完全的弹性波禁带,可以阻止声波或者振动在其内部传播。采用平面波算法研究了二维正方点阵声子晶体的禁带结构。在甲醇/水银双组分二维(2D)液相体系中发现了很大的完全禁带,到目前为止,在固相体系和其他液相体系中还没有发现相同宽度和相同数量的完全禁带。还研究了声子晶体中散射体的横截面为圆形和绕其中心轴旋转任意角度的正方形时完全禁带的产生规律,探索了第一禁带宽度与第一禁带中心频率的比值△Ω1/Ωc1和填充率F之间的关系,以及前50个频带中禁带的总宽度Σ△Ωn/Ωcn和填充率F之间的关系。 Phononic crystal can give rise to complete acoustic band gaps within which sound and vibrations are forbidden. In this paper, we use plane wave algorithm to study the band gap structure of 2D phononic crystal with square lattices. The results show that a giant full band gap is found in the CH3OH/Hg system. And in other solid or liquid system, the same width and quantity full band gaps have not been found so far. The influence of different cross section shapes of the scatter pole in 2D phononic crystal for forming full band gap is also studied. From the results, we get the relation of the first(total) relative frequency width with the filling ratio.
出处 《噪声与振动控制》 CSCD 北大核心 2006年第1期18-22,共5页 Noise and Vibration Control
关键词 声学 声子晶体 正方点阵 声子禁带 能带结构 acoustics phononic crystal square lattice phononic band gap band structure
  • 相关文献

参考文献12

  • 1Sigalas M M, Economou E N. Elastic and acoustic wave band structure [ J ]. Journal of Sound and Vibration,1992,158(2):377-380. 被引量:1
  • 2Kushwaha M S, Halevi P, Dobrzynsi L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993,71 (13) : 2022 - 2025. 被引量:1
  • 3Martinez-Sala R, Sancho J, Sanchez J V, et al. Sound attenuation by sculpture[J ]. Nature, 1995,378:241. 被引量:1
  • 4温激鸿,韩小云,王刚,赵宏刚,刘耀宗.声子晶体研究概述[J].功能材料,2003,34(4):364-367. 被引量:52
  • 5Economou E N, Sigalas M M. Classical wave propagation in periodic structures: Cermet versus network topology[J]. Physical Review B, 1993, 48 (18):13434 -13438. 被引量:1
  • 6Economou E N, Sigalas M M. Stop bands for elastic waves in periodic composite materials[J]. Journal of the Acoustical Society of America, 1994, 95 (4) : 1734 -1740. 被引量:1
  • 7Kushwaha M S, Halevi P, et al. Theory of acoustic band structure of periodic elastic composites [ J ]. Physical Review B, 1994,49(4):2313-2322. 被引量:1
  • 8Kushwaha M S, Halevi P. Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders[J].Applied Physics Letters, 1996,69(1) :31 - 33. 被引量:1
  • 9Sigalas M M. Elastic wave band gaps and defect states in two-dimensional composites [J]. Journal of the Acoustic Society of America, 1997,101 (3) : 1256 - 1261. 被引量:1
  • 10Kushwaha M S, Djafari-Rouhani B. Giant sonic stop bands in two-dimensional periodic system of fluids[J].Journal of Applied Physics, 1998,84 (9) : 4677 - 4683. 被引量:1

二级参考文献39

  • 1Joannopoulos J D, Meade R D, Wlnn J N. Photonie Crystals[M]. Princeton Univ Press, 1995. 被引量:1
  • 2Yablonoviteh E. [J]. Physical Review Letters, 1987, 58(20):2059. 被引量:1
  • 3John S. [J]. Physical Review Letters, 1987, 58(20): 2486. 被引量:1
  • 4Sigalas M M, Economou E N. [J]. Journal of Sound and Vibration,1992,158(2) : 377. 被引量:1
  • 5Kushwaha M S, Halevi P, Dobrzynsi L, et al. [J]. Physical Review Letters, 1993,71(13):2022. 被引量:1
  • 6Economou E N, Sigalas M M. [J]. Physical Review B, 1993, 48(18): 13434. 被引量:1
  • 7Kushwaha M S, Halevi P,et al. [J]. Physical Review B, 1994,49(4), 2313. 被引量:1
  • 8Munjal M L [J]. Journal of Sound and Vibration, 1993, 162(2) : 333. 被引量:1
  • 9Vasseur J O, Djafari-Rouhani B, et al. [J]. Journal of Physics,Condensed Matter, 1994, 6:8759. 被引量:1
  • 10Martinez-Sala R, Sancho J, Sanchez J V, et al. [J]. Nature,1995, 378: 241. 被引量:1

共引文献73

同被引文献26

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部