摘要
A field experiment established in 1997 was conducted to study the effect of long-term N fertilizer application on N mineralization in a paddy soil determined using a laboratory anaerobic incubation followed with a field incubation and to measure the relationship between in situ N mineralization and crop N uptake. To estimate N mineralization in the laboratory, soil samples were collected from plots with N application at different rates for six years and were incubated. Soils treated with fertilizer N mineralized more N than unfertilized soils and mineralization increased with N application rates. Also, the fraction of total N mineralized increased with increasing N fertilizer application. These findings meant that a substantial portion of previously applied N could be recovered slowly over time in subsequent crops. The field incubation of the plot receiving no fertilizer N showed that the NH4^+-N concentration varied greatly during the rice-growing season and seasonal changes of N mineralization were due more to accumulation of NH4^+-N than NO3^-N. Hice N uptake increased up to a maximum of 82 kg N ha^-1 during the season. The close agreement found between in situ N mineralization and rice N uptake suggested that the measurement of in situ N mineralization could provide useful recommendations for adequate fertilizer N application.
A field experiment established in 1997 was conducted to study the effect of long-term N fertilizer application on N mineralization in a paddy soil determined using a laboratory anaerobic incubation followed with a field incubation and to measure the relationship between in situ N mineralization and crop N uptake. To estimate N mineralization in the laboratory, soil samples were collected from plots with N application at different rates for six years and were incubated. Soils treated with fertilizer N mineralized more N than unfertilized soils and mineralization increased with N application rates. Also, the fraction of total N mineralized increased with increasing N fertilizer application. These findings meant that a substantial portion of previously applied N could be recovered slowly over time in subsequent crops. The field incubation of the plot receiving no fertilizer N showed that the NH4+-N concentration varied greatly during the rice-growing season and seasonal changes of N mineralization were due more to accumulation of NH4+-N than NO3--N. Rice N uptake increased up to a maximum of 82 kg N ha-1 during the season. The close agreement found between in situ N mineralization and rice N uptake suggested that the measurement of in situ N mineralization could provide useful recommendations for adequate fertilizer N application.
基金
Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-413-4)the National Basic Research Program of China (No. 2005CB121107).