期刊文献+

一种基于核主成分特征组合的人脸识别方法 被引量:7

A Method for Face Recognition Based on Combination of KPCA Features
下载PDF
导出
摘要 提出了一种基于核主成分特征组合的人脸识别方法。首先利用主成分分析,获得原始输入图像的二阶特征脸图像;然后运用核主成分分析分别抽取原始图像和二阶特征脸图像的核主成分特征,最后将它们组合成一个组合特征向量,进行人脸识别。在ORL人脸库上的实验表明,两种图像的核主成分特征分别有着良好的特点,取得了较好的识别效果,优于核主成分分析和二阶特征脸的结果。 A new face recognition method based on combination of KPCA features is proposed in this paper.Firstly K-L transform method is used to transform initial images,then we get the second-order face image by rebuilding images, then KPCA is used to get two kinds of feature vectors for the initial image and its second-order face image.Lastly,we combine the two kinds of vectors of everyone into a longer vector.To verify the efficient of the method,we test this method on ORL face database and experiment result shows that this face recognition method is more available than kernel principal component analysis and the second-order principal component analysis.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第3期76-78,92,共4页 Computer Engineering and Applications
基金 江苏省高校自然科学基金资助项目(编号:05KJB520102) 扬州大学自然科学基金资助项目(编号:KK0413160)
关键词 人脸识别 二阶特征脸 核主成分分析 图像识别 face recognition,Principal Component Analysis,second-order Principal Component Analysis,Kernel Principal Component Analysis
  • 相关文献

参考文献9

  • 1Pentland A.Looking at people:sensing for ubiquitous and wearable computing[J].IEEE Trans Pattern Anal Machine Intell, 2000 ; 22 ( 1 ) : 107-119. 被引量:1
  • 2Maxim A,Grudin.On internal representations in face recognition systems[J],Pattem Recognition,2000;33(8) :1161-1177. 被引量:1
  • 3Turk M,A PentIand.Face recognition using Eigenfaces[C].In:Proc IEEE Conf on Computer Vision and Pattern Recognltion,1991:586-591. 被引量:1
  • 4Pentland A,Moghaddam B,Starner T.View-based and mododular eigenspaces for face recognition[C].In :Proc IEEE Conf on Computer Vision and Pattern Recognition, 1994 : 84-91. 被引量:1
  • 5Wang L,Tan T K,Experiments results of face description based on the 2nd-order eigenfaces method[S].ISO/MPEG 6001 ,Geneva,2000-05. 被引量:1
  • 6Wang L,Tan T K,A new proposal for face feature description[S].ISO/ MPEG m6001 ,Noordwi kerhout,2000-05. 被引量:1
  • 7Kim Hyun-Chul,Kim Sung Daijin,Yang Bang et al.Face Recognition using the Second-order mixture-of-eigenfaces method[J].Pattem Recognition, 2004 ; 37 (8) : 337-349. 被引量:1
  • 8Schoelkopf B,Mika S,Burges C et al.Input space vs feature space in kernel-based methods[J].IEEE Trans Neural Networks, 1999, (10) :1000-1017. 被引量:1
  • 9Schoelkopf B ,Smola A,Robert Muller K.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computer,1998;(10): 1299-1319. 被引量:1

同被引文献57

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部