摘要
本文给出在刚塑性有限元迭代计算中确定松弛因子β的一种新算法─—三次因式法。该方法假定,对于给定的迭代方向△vk,最佳松弛因子β应使刚塑性有限元法的泛函φ(vk+β△vk,λ)最小。利用这一极值原理,得到一个关于β的非线性方程,近似简化后成三次方程,直接求解。挤压过程的刚塑性有限元法模拟计算表明,这种新算法可明显改善迭代运算的收敛性,不但收敛加快,而且发散的可能性大为减少,显著地提高计算效率。
This paper describes a new scheme for the calculation of the relaxation factor β in the iteration of rigid-plastic finite element analysis. It is assumed that the optimal β for a given iterative direction △vk is the one which minimizes the functional (vk+β△vk, λ), where λ is the Lagrange multipler. The nonlinear equation of β obtained is subsequently approximated by a cubic equation from which β is solved directly. The numerical simulations of extrusion processes confirmed that this algorithm can speed up the convergence of the solution with minimum risk of divergence.
出处
《塑性工程学报》
CAS
CSCD
1996年第2期24-32,共9页
Journal of Plasticity Engineering
关键词
数值模拟
刚塑性
有限元
三次因式法
金属加工
Numerical simulation, Rigid-plastic finite element method, Nonlinear analysis