期刊文献+

基于知识发现的因果自动机

Causality Automaton Based on Knowledge Discovery
下载PDF
导出
摘要 随着社会的发展,人们对因果关系的研究越来越受到重视,但到目前为止基本都是从现有的知识中寻找因果关系,存在无法发现更深层次的关系和规律的缺陷。为此,我们利用有限自动机可以精确地刻画软件系统或其子系统的行为的特性,从有限自动机入手,运用知识发现的方法,针对需要解决的问题挖掘出更深层次的因果关系和规律,将知识发现理论与因果关系的研究有机结合,较系统地形成因果关系的理论和方法,建立因果状态空间,形成基于知识发现的因果自动机的初步理论框架,以解决和发现不同形态下的因果关系。 With the development of society,people's study on causality is being paid attention to,but up till now have all been basically look for causality from existing knowledge.the unable defect of finding deeper relation and law exists.For this reason,we utilize the finite automaton characteristics to portray the behaviors of the software system or their subsystems accurately,proceed with finite automaton,use the method of knowledge discovery,excavate out deeper causality and law to the question that need solving,combine the theory of knowledge discovery with the research of causality organically,form the theory and method of causality more systematically,set up the state space of cause and effect.form the preliminary theory frame of causality automaton based on knowledge discovery,in order to solve and find the causality under different shapes.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第1期17-19,22,共4页 Computer Engineering and Applications
基金 国家科技成果重点推广计划项目(编号:2003EC000001) 教育部科技重点项目(编号:教技司[2000]175) 北京市自然科学基金资助项目(编号:4022008)
关键词 知识发现 因果关系 因果状态空间 因果自动机 knowledge discovery,causality,state space of cause and effect,causality automaton
  • 相关文献

参考文献4

二级参考文献40

  • 1Ray L G. A Framework for Autcnomous Knowledge Diseovery from Databases. Ph D Dissertation, University of Pittsburgh, 2001. 被引量:1
  • 2Mannila H. Theoretical frameworks for data mining. SIGKDD Explorations, 2000, 1(2): 30-32. 被引量:1
  • 3Fayyad U M, Piatetsky-Shapiro G, Uthurusamy R. Summary from the KDD-03 panel-data mining: The next 10 years. SIGK-DD Explorations, 2003, 5(2): 191-196. 被引量:1
  • 4Coppi R. A theoretical framework for data miningt The "informational paradigm". Computational Statistics & Data Analysis,2002, 38 (4):501-515. 被引量:1
  • 5Xie Y, Raghavan V V. A theoretical framework for knowledge discovery in databases based on probabilistic logic, In: Wang G,Liu Q, Yao Y. et al.,eds, Proceedings of 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Chongqing, China, May. 2003. Berlin Heidelberg:Springer-Verlag, 2003, 541-548. 被引量:1
  • 6Wang X F, Lu J, Wang T R. Correlativity sets based theorctical frameworks of data mining. In: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics.Xi'an, China, 2003. IEEE, 2003, 188-193. 被引量:1
  • 7Bertalanffy V著,林康义,等译.一般系统论基础、发展和应用.北京:清华大学出版社,1987. 被引量:1
  • 8Yang B R. Knowledge Discovery Based on Inner Mechanism:Construction, Realization and Application. USA: Elliott & Fitzpatrick Inc,2004. 被引量:1
  • 9Yang B R. FIA and CASE based on fuzzy language field. Fuzzy Sets and Systems, 1998, 95(1): 83-89. 被引量:1
  • 10Yang B R, Shen J T, Song W. KDK based double-basis fusion mechanism and its process model. International Journal on Artificial Intelligence Tools, 2005, 14 (3) : 399-423. 被引量:1

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部