期刊文献+

A Priori Bounds for Periodic Solutions of a Kind of Second Order Neutral Functional Differential Equation with Multiple Deviating Arguments 被引量:8

A Priori Bounds for Periodic Solutions of a Kind of Second Order Neutral Functional Differential Equation with Multiple Deviating Arguments
原文传递
导出
摘要 Thc main aim of this paper is to use the continuation theorem of coincidence degree theory for studying the existence of periodic solutions to a kind of neutral functional differential equation as follows:(x(t)-^n∑i=1cix(t-ri))″=f(x(t))x′+g(x(t-τ))+p(t).In order to do so, we analyze the structure of the linear difference operator A : C2π→C2π, [Ax](t) =x(t)-∑^ni=1cix(t-ri)to determine some flmdamental properties first, which we are going to use throughout this paper. Meanwhile, we also prove some new inequalities which are useful for estimating a priori bounds of periodie solutions. Thc main aim of this paper is to use the continuation theorem of coincidence degree theory for studying the existence of periodic solutions to a kind of neutral functional differential equation as follows:(x(t)-^n∑i=1cix(t-ri))″=f(x(t))x′+g(x(t-τ))+p(t).In order to do so, we analyze the structure of the linear difference operator A : C2π→C2π, [Ax](t) =x(t)-∑^ni=1cix(t-ri)to determine some flmdamental properties first, which we are going to use throughout this paper. Meanwhile, we also prove some new inequalities which are useful for estimating a priori bounds of periodie solutions.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第6期1309-1314,共6页 数学学报(英文版)
基金 the National Natured Science Foundation (No.10371006) the Natural Science Foundation of Anhui Province of China (2005 kj031ZI):050460103)
关键词 Periodic solution Continuation theorem Neutral functional differential equation Periodic solution, Continuation theorem, Neutral functional differential equation
  • 相关文献

参考文献11

  • 1Hale, J, K, Mawhin, J.: Coincidence degree and periodic solutions of neutral equations. J. Diff. Eqns,15, 295-307 (1975). 被引量:1
  • 2Fan, M, Wang, K.: Periodic solutions of convex neutral functional differential equations, Tohoku J. Math,52, 47-49 (2000). 被引量:1
  • 3Hale, J. K.: Theory of functional differential equations, Springer-Verlag, New York, 1977. 被引量:1
  • 4Bartsch, Th, Mawhin, J.: The Leray Schauder degree of S^1-equivariant operator associated to autonomous neutral equations in spaces of periodic functions. J. Differential Equations, 92, 90-99 (1991). 被引量:1
  • 5Serra, E.: Periodic solutions for some nonlinear differential equational equations of neutral type, Nonlinear Analysis, TMA, 17, 1:139-151 (1991). 被引量:1
  • 6Lu, S. P, Ge, W. G.: On the existence of periodic solutions for neutral functional differential equation.Nonlinear Analysis, TMA, 54, 1285-1306 (2003). 被引量:1
  • 7Lu, S. P, Ge, W. G.: On the existence of periodic solutions for a kind of second order n-Dimensional neutral differential equation. Aeta Mathematica Sinica, Chinese Series, 46(3), 601-610, (2003). 被引量:1
  • 8Lu, S. P, Ge, W. G, Zheng, Z. X.: Periodic,solutions to neutral functional differential equation with deviating arguments. Applied Mathematics and Computation, 152(1), 17-27 (2004). 被引量:1
  • 9Lu, S, P, Ge, W. G.: Problems of periodic solutions for a kind of second order neutral functional differential equation. Applicable Analysis, 82(5), 393-410 (2003). 被引量:1
  • 10Lu, S. P, Ge, W. G, Zheng, Z. X.: Existence of periodic solutions for neutral functional differential equation.Chinese Annals of Mathematics (A), 25(5), 645-652 (2004). 被引量:1

同被引文献17

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部