摘要
Thc main aim of this paper is to use the continuation theorem of coincidence degree theory for studying the existence of periodic solutions to a kind of neutral functional differential equation as follows:(x(t)-^n∑i=1cix(t-ri))″=f(x(t))x′+g(x(t-τ))+p(t).In order to do so, we analyze the structure of the linear difference operator A : C2π→C2π, [Ax](t) =x(t)-∑^ni=1cix(t-ri)to determine some flmdamental properties first, which we are going to use throughout this paper. Meanwhile, we also prove some new inequalities which are useful for estimating a priori bounds of periodie solutions.
Thc main aim of this paper is to use the continuation theorem of coincidence degree theory for studying the existence of periodic solutions to a kind of neutral functional differential equation as follows:(x(t)-^n∑i=1cix(t-ri))″=f(x(t))x′+g(x(t-τ))+p(t).In order to do so, we analyze the structure of the linear difference operator A : C2π→C2π, [Ax](t) =x(t)-∑^ni=1cix(t-ri)to determine some flmdamental properties first, which we are going to use throughout this paper. Meanwhile, we also prove some new inequalities which are useful for estimating a priori bounds of periodie solutions.
基金
the National Natured Science Foundation (No.10371006)
the Natural Science Foundation of Anhui Province of China (2005 kj031ZI):050460103)