摘要
流域生态环境质量评价是协调流域生态环境的压力、状态、响应诸因子,实现流域可持续发展的一项重要调控措施,其难点是如何合理确定各评价指标的权重,以及如何有效处理评价过程中的模糊性和随机性。为此提出了最大信息熵原理与模糊模式识别方法、遗传算法相耦合的流域生态环境质量评价新模型(EFPR-EQEB)。在巢湖流域中的应用结果表明:用EFPR-EQEB进行流域生态环境质量评价,物理概念明确,计算结果客观、合理,方法简明、通用,在区域资源和环境综合评价中具有一定的应用价值。
Basin eco-environmental quality evaluation is an important adjust and control measure for coordinating pressure, state and response factors of basin eco-environmental system, and achieving basin sustainable development. The difficulty is how to determine weights of evaluation indexes with reason, and how to effectively deal with fuzziness and randomness existing in the evaluation process. For this reason, a fuzzy pattern recognition model based on maximum information entropy principle and genetic algorithm was proposed, which formed a new model, named EFPR-EQEB for short. The applied result of Chaohu basin shows that as a method for basin eco-environmental quality evaluation with distinct concept of mathematics and physics, EFPR-EQEB is concise and general. Its computation result is objective and reasonable, so it can be widely applied in different resources and environment comprehension evaluation.
出处
《四川大学学报(工程科学版)》
EI
CAS
CSCD
北大核心
2006年第1期5-9,共5页
Journal of Sichuan University (Engineering Science Edition)
基金
国家自然科学基金资助项目(7047109050579009)
国家"十五"科技攻关项目(2004BA608B-02-02)
教育部优秀青年教师资助计划(教人司[2002]350)
关键词
流域生态环境质量评价
模糊模式识别
最大信息熵原理
遗传算法
巢湖流域
basin eco-environmental quality evaluation
fuzzy pattern recognition
maximum information entropy princi- ple
genetic algorithm
Chaohu basin