摘要
Gyroscopic dynamic system can be introduced to Hamiltonian system. Based on an adjoint symplectic subspace iteration method of Hamiltonian gyroscopic system, an adjoint symplectic subspace iteration method of indefinite Hamiltonian function gyroscopic system was proposed to solve the eigenvalue problem of indefinite Hamiltonian function gyroscopic system. The character that the eigenvalues of Hamiltonian gyroscopic system are only pure imaginary or zero was used. The eigenvalues that Hamiltonian function is negative can be separated so that the eigenvalue problem of positive definite Hamiltonian function system was presented, and an adjoint symplectic subspace iteration method of positive definite Hamiltonian function system was used to solve the separated eigenvalue problem. Therefore, the eigenvalue problem of indefinite Hamiltonian function gyroscopic system was solved, and two numerical examples were given to demonstrate that the eigensolutions converge exactly.
Gyroscopic dynamic system can be introduced to Hamiltonian system. Based on an adjoint symplectic subspace iteration method of Hamiltonian gyroscopic system, an adjoint symplectic subspace iteration method of indefinite Hamiltonian function gyroscopic system was proposed to solve the eigenvalue problem of indefinite Hamiltonian function gyroscopic system. The character that the eigenvalues of Hamiltonian gyroscopic system are only pure imaginary or zero was used. The eigenvalues that Hamiltonian function is negative can be separated so that the eigenvalue problem of positive definite Hamiltonian function system was presented, and an adjoint symplectic subspace iteration method of positive definite Hamiltonian function system was used to solve the separated eigenvalue problem. Therefore, the eigenvalue problem of indefinite Hamiltonian function gyroscopic system was solved, and two numerical examples were given to demonstrate that the eigensolutions converge exactly.
基金
Project supported by the National Natural Science Foundation of China(No.10372019)
the Doctoral Fund of Ministry of Education of China(No.20010141024)