摘要
本文提出了基于神经—模糊融合网络的数据关联新方法,解决了杂波背景下多目标数据关联的实际问题。首先为分级实现数据关联和降低关联模糊度,在文献[1]的基础上构造了多目标快速数据关联的系统结构。然后应用神经—模糊融合技术和改进的模糊基函数网络学习算法完成相关值的计算。该方法在地波超视距达站应用结果表明,这种方法提高了数据关联的性能和快速性,并为强海杂波背景下多目标跟踪提供了一种新的方法。
In this paper,we propose a new data association algorithm based on neural-fuzzy fusion networks,to solve the problems in the practical application of multitarget data association in clutter. Firstly,we present a system structure for the fast multi target data association ,which results in realizing the data association in series and reducing the fuzziness of association.Secondly,we apply the neural-fuzzy fusion technology and the modified fuzzy basic function networks in the computing of correlation.Finally,the results of its application in the Ground Wave Over-The-Horizon Radar prove that this fast algorithm,have improved the performances of the multitarget data association in the rough sea clutter.
出处
《电子学报》
EI
CAS
CSCD
北大核心
1996年第7期66-71,共6页
Acta Electronica Sinica
基金
国家教委博士点基金
黑龙江省科委基金
关键词
神经-模糊融合
数据关联
多目标跟踪
Neural-fuzzy fusion networks,Data association,Multitarget tracking