期刊文献+

GDQR求解阶梯形变截面环向加箍贮液罐问题 被引量:2

Solution of the banded storage tanks circumferentially with stepped wall thickness in circumferential by GDQR
下载PDF
导出
摘要 介绍了广义微分求积法(GDQR)的一般原则,对比了用传统DQ法与GDQR在处理截面突变问题中的优劣,研究了用DQ法试解静水压力作用下变截面环向加箍贮液罐圆筒问题,由于变截面处的奇异性问题,所得到的结果不收敛,而采用GDQR重解该问题则得到收敛解.为验证GDQR的计算准确性,采用有限元法,将整个罐体离散为5 173个壳单元求得位移和应力,可知两者位移误差为2.4%,应力误差为4.2%,显然对于本问题GDQR解的精度是很高的.在工业中为方便计算通常将环箍简化为集中力,在GDQR计算环箍高度为200 mm的基础上,进一步讨论了能达到的工业精度要求的环箍最高高度,其结果可供一类工程应用参考. A generalized differential quadrature rule (GDQR) and the differential quadrature method (DQM) were applied to obtain solution of deformation and internal forces of the banded storage tank circumferentially with stepped wall thickness. Compared with the DQM solution, it was shown that the solutions obtained from GDQR were better than those from the DQM in the solution of this problem and DQM can't be used to solve those problems. By FEM, the correctness of GDOR was verified. The tank could be parted 5173 units and gotten the solution of deformation and internal forces by FEM. Compared with GDQR and FEM, the error of displacement was 2.4 percent and the error of force was 4.2 percent in the solutions. It was seen that GDQR was very precise. In industry, the stepped wall is often simplified as effects of force. On the basis of calculating the hoop height with 200 mm, the highest height of hoop required by industry precision was discussed. It can provide application reference for an engineering project.
作者 刘洋 梁枢平
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第1期101-104,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 贮液罐 GDQR变截面 加箍 storage tank GDQR stepped wall thickness banded circumferential
  • 相关文献

参考文献12

  • 1温德超,郑兆昌,孙焕纯.储液罐抗震研究的发展[J].力学进展,1995,25(1):60-76. 被引量:57
  • 2铁摩辛柯 沃诺斯基.板壳理论[M].北京:科学出版社,1977.. 被引量:8
  • 3徐芝纶.弹性力学(下册)[M].北京:高等教育出版社,1992.. 被引量:6
  • 4Chen Weilong, Striz A G, Bert C W. A new approach to the differential quadrature method for fourth-order equations[J]. International Journal for Numerical Methods in Engineering, 1997, 40:1 941-1 956. 被引量:1
  • 5Wu T Y, Liu G R. The differential quadrature as a numerical method to solve the differential equation[J].Computational Mechanics, 1999, 24, 197-205. 被引量:1
  • 6Wu T Y, Liu G R. Application of the generalized differential quadrature rule to six-order differential equations[J]. Communications in Numerical Methods in Engineering, 2001, 17(5): 355-364. 被引量:1
  • 7Wu T Y, Liu G R. The generalized differential quadrature rule for fourth-order differential equations[J].International Journal for Numerical Methods in Engineering, 2001, 50(8): 1 907-1 929. 被引量:1
  • 8Wu T Y, Liu G R. Axisymmetric bending solution of shells of revolution by the generalized differential quadrature rule[J]. International Journal of Pressure Vessels and Piping, 2000, 16(11): 777-784. 被引量:1
  • 9梁枢平,安群力,杨挺青.高密度聚乙烯板材焊接储液罐强度分析[J].工程力学,1999,16(5):133-137. 被引量:4
  • 10范钦珊著..轴对称应力分析[M].北京:高等教育出版社,1985:375.

二级参考文献9

  • 1徐芝纶.弹性理论(下册)第二版[M].北京:高等教育出版社,1978.. 被引量:1
  • 2Wang Xinwei,J Sound and Vibration,1993年,162卷,3期,566页 被引量:1
  • 3Feng Yusheng,Nonlinear Dyn,1992年,3卷,1期,13页 被引量:1
  • 4丁伯民,压力容器设计-原理及工程应用,1992年 被引量:1
  • 5潘家华,圆柱形金属油罐设计,1984年 被引量:1
  • 6徐芝纶,弹性理论.下(第2版),1978年 被引量:1
  • 7曹志远,张佑啟.结构与内流体相互作用问题的半解析方法[J]应用数学和力学,1985(01). 被引量:1
  • 8蔡国琰,曲乃泗,赖国璋.贮液罐结构水弹性抗震分析[J]大连工学院学报,1979(03). 被引量:1
  • 9梁枢平,李宏锋,陈文.变截面梁大挠度振动的 Quadrature 解[J].华中理工大学学报,1997,25(11):87-89. 被引量:2

共引文献74

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部