摘要
本文证明了如果X是不含c0的Banach空间,f是定义在区间I0(?)Rm上取值于Banach空间X的函数,并且f在I0上Henstock可积,则总存在I0的一个非退化子区间J,使得f在J上McShane可积,从而对Kartak的一个问题作出了肯定的回答.
If a Banach space-valued function f defined on I0 belong to R^m is Henstock integrable, then one can always find a nondegenerate subinterval J belong to I0 on which f is McShane integrable when X contains no copy of co. So we give an affirmative answer to a problem proposed by Kartak.
出处
《数学进展》
CSCD
北大核心
2005年第6期741-745,共5页
Advances in Mathematics(China)
基金
The work is supported by Science Foundation of Hohai University.