期刊文献+

Henstock积分问题的一个注记(英文)

Remarks on Henstock Integrability
下载PDF
导出
摘要 本文证明了如果X是不含c0的Banach空间,f是定义在区间I0(?)Rm上取值于Banach空间X的函数,并且f在I0上Henstock可积,则总存在I0的一个非退化子区间J,使得f在J上McShane可积,从而对Kartak的一个问题作出了肯定的回答. If a Banach space-valued function f defined on I0 belong to R^m is Henstock integrable, then one can always find a nondegenerate subinterval J belong to I0 on which f is McShane integrable when X contains no copy of co. So we give an affirmative answer to a problem proposed by Kartak.
机构地区 河海大学理学院
出处 《数学进展》 CSCD 北大核心 2005年第6期741-745,共5页 Advances in Mathematics(China)
基金 The work is supported by Science Foundation of Hohai University.
关键词 PETTIS积分 MCSHANE积分 HENSTOCK积分 Pettis integral McShane integral Henstock integral
  • 相关文献

参考文献12

  • 1Karták K. K teoril vicerozmerneho integralu [J]. Casopis Pest. Mat., 1955, 80: 400-414. 被引量:1
  • 2Ostaszewski K M. Henstock Integration in the Plane [M]. Mem. Amer. Math. Soc., no. 63, Amer. Math.Soc., Providence, R.I., 1986. 被引量:1
  • 3Saks S. Theory of the Integral [M]. New York: Hafner, 1937. 被引量:1
  • 4Buczolich Z. Henstock integrable functions are Lebesgue integrable on portion [J]. Proc. of the Amer.Math. Soc., 1991, 111: 127-129. 被引量:1
  • 5Lee Peng Yee. Lanzhou Lectures on Henstock Integration [M]. Singapore: World Scientific, 1989. 被引量:1
  • 6Fremlin D H. The Henstock and McShane integrals of vector-valued functions [J]. Illinois Journal of Math., 1994, 38: 471-479. 被引量:1
  • 7Fremlin D H, Mendoza J. The integration of vector-valued functions [J]. Illinois Journal of Math., 1994,38: 127-147. 被引量:1
  • 8Ye Guoju, Schwabik S. The McShane and the weak McShane integrals of Banach space-values functions defined on Rm [J]. Mathematical Notes, Miskolc, 2001, 2: 127-136. 被引量:1
  • 9Ye Guoju, Schwabik S. The McShane integral and the Pettis integral of Banach space-valued functions defined on Rm [J]. Illinois Journal of Math., 2002, 46: 1125-1144. 被引量:1
  • 10Cao C S. The Henstock integral for Banach-valued functions [J]. SEA. Bull Math., 1992, 16: 35-40. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部