期刊文献+

偏最小二乘回归神经网络的矿坑涌水量预测 被引量:11

Forecasting Water Yield of Mine with the Partial Least-Square Method and Neural Network
下载PDF
导出
摘要 影响矿坑充水的因素多且复杂,矿坑涌水量预测模型主要考虑降水、地表水、引水灌溉等影响因素,因变量和自变量的关系比较复杂。将偏最小二乘回归与神经网络耦合,建立了矿坑涌水预报模型。模型将自变量利用偏最小二乘回归处理,提取对因变量影响强的成分,既可以克服变量之间的相关性问题,又可以降低神经网络的输入维数,并能较好地解决非线性问题,提高了模型的学习能力和表达能力。以河南鹤壁八矿涌水量为例,建立了基于偏最小二乘回归和神经网络耦合的矿坑涌水量预测模型。计算验证表明,该类模型具有较高的预报精度和推广应用价值。 There are many and complex factors affecting the gushing water in pit. The forecasting model of water yield of mine mostly takes into account of precipitation, surface water, irrigation and the relation of following variable and independent variable. The authors establish the forecasting model for water yield of mine, combining neural network model with the partial least square method. To deal with independent variables by the partial least square method can not only solve the relationship between in- dependent variables but also to reduce the input dimensions in neural network model. And when the neural network is applied,it can solve the non-linear problem better,and advance study and expression ability of the model. As the example of water yield of mine in Eighth mine, Hebi City, Henan Province, the model of water yield of mine,coupled with partial least square method and neural network, is founded and the case study shows it has rather high forecasting precision and the extending application value.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2005年第6期766-770,共5页 Journal of Jilin University:Earth Science Edition
基金 国家高技术研究发展计划("863"计划)项目(2002AA2Z4291)
关键词 矿坑涌水量 偏最小二乘回归 神经网络 预报模型 water yield of mine partial least square method neural network forecasting model
  • 相关文献

参考文献7

二级参考文献14

  • 1黄明敏.地下水位多年变化的趋势分析和周期分析[J].水文地质工程地质,1982,1. 被引量:1
  • 2元华璋.葛洲坝水电站来水长期预报数学模型研究,《葛洲坝水利枢纽论文选集》[M].水利电力出版社,1993.. 被引量:1
  • 3KANO M. Inferential control system of distillation compositions using dynamic PLS regression [J]. Journal of Process Control, 2000, 10: 157-166. 被引量:1
  • 4WOLD S, KETTANEH-WOLD N, SKAGERBERG B. Nonlinear PLS modeling [J]. Chemometrics and Intelligent Laboratory Systems, 1989, 7:53-56. 被引量:1
  • 5WOLD S. Nonlinear PLS modeling II: Spline inner relation (SPL-PLS) [J]. Chemometrics and Intelligent Laboratory Systems, 1992, 14: 71-84. 被引量:1
  • 6QIN S J, MCAVOY T J. Nonlinear PLS modeling using neural networks [J]. Computer and Chemical Engineering, 1992, 16: 379-392. 被引量:1
  • 7元华璋,葛洲坝水利枢纽论文选集,1993年 被引量:1
  • 8黄明敏,水文地质工程地质,1982年,1期 被引量:1
  • 9梁军.大型板坯加热炉中钢坯温度分布的软测量研究及实现[J].仪器仪表学报,1999,20(1):81-83. 被引量:16
  • 10梁军,吕勇哉.轧钢加热炉混合智能控制系统[J].钢铁,1996,31(S1):113-117. 被引量:6

共引文献63

同被引文献96

引证文献11

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部