期刊文献+

大型数据库中关于多频项集的动态增量式挖掘

Dynamic Growing Data Mining of More Frequent Itemset in Large Database
下载PDF
导出
摘要 提出了一种针对大型数据库、关于多频项集、动态增量式的挖掘新算法,利用前次的挖掘结果和新增物品项ID的明细数据,能有效地挖掘出频繁项集及各项ID之间的量化比例关系,给商家和物流系统提供信息指导,避免错误决策,对实现物流系统自动化及其它数据挖掘应用领域都具有极其重要的指导意义。 Present data mining method have some disadvantages: when association relationship are mined between ID-set in database, information mined implies connection 1D-set, but do not imply quantity relationship, otherwise, when recorders of database increase database is scanned repeat, system resources are wasted. In this paper mining algorithm is proposed about large database, more frequent itemsets, dynamic growing, that utilizes last mining result and information data of ID-set, can mine quantity relationship all ID set in database, provides information guide to commerce and interflow of commodities to avoid decision mistakes. It is of importance about realizing modernization of interflow of commodities and some other application respect of data mining.
作者 何友全
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第2期76-78,共3页 Computer Engineering
基金 重庆市科委基金资助项目(CSTC 20056112)
关键词 数据挖掘 增最挖掘 多频项集 物流 Data mining Growing mining More frequent itcmset Commodities interflow
  • 相关文献

参考文献10

  • 1Agrawal R, lmieliski T, Swami A. Mining Association Rules Between Sets of Items in Large Database[C]. Proc.of ACM SIGMOD Intl.Conference on Management of Data(SIGMOD'93), 1993:207-216. 被引量:1
  • 2Han J, Kamber M. Data Mining Concepts and Techniques[M].Beijing:China Machine Press, 2001 : 152-156. 被引量:1
  • 3Park J S, Chert M S, Yu P S. An Efficient Hash-based Algorithm for Mining Association Rules[C]. Proceedings of the ACM SIGMOD International Conference on Management of Data, San Jose,California, 1995:175-186. 被引量:1
  • 4Park J S, Chen M S, Yu P S. An Efficient Parallel Mining for Association Rules[C]. Proc. of 4^th Int. Conf. Information and Knowledge Management, Baltimore,MD, 1995-11:31-36. 被引量:1
  • 5Han J, Fu Y. Discovery of Multiple-level Association Rules from Large Databases[C]. Proc, of 1995 Int. Conf. Very Large Data Bases(VLDB'95), Zurich, Switzerland, 1995-09:420-431. 被引量:1
  • 6Savasere A, Omiecinski E, Navathe S. An Efficient Algorithm for Mining Association Rules in Larges Databases[C]. Proceedings of the 21^th International Conference on Very Large Data Bases, Zurich,Switzerland, 1995:432-443. 被引量:1
  • 7Toivonen H. Sampling Large Databases for Association Rules[C],Proc. of 1996 Int. Conf. Very Large Databases(VLDB'96), Bombay,India, 1996-09:134-145. 被引量:1
  • 8Brin S, Motwani R, Ullman J D, et al.Dynamic Itemset Counting and Implication Rules for Market Basket Data[C]. Proceedings of the ACM SIGMOD International Conference on Management of Data,Tucson, Arizona, 1997:255-264. 被引量:1
  • 9Dhond A, Gupta A, Vadhavkar S, Data Mining Techniques for Optimizing Inventories for Electronic Commerce[C]. Proceeding of the ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000:480-486. 被引量:1
  • 10Smith A, Gupta N D. Neural Networks in Business: Techniques and Applications for the Operations Researcher[J]. Computers and Operations Research, 2000, 27(11/12): 1023-1044. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部