期刊文献+

基于支撑向量机和小波的字符识别 被引量:7

Character recognition based on support vector machines and wavelet
下载PDF
导出
摘要 为了提高车牌上的字符识别准确率,提出一种结合支撑矢量机(SVM)和小波的字符识别方法.通过对字符图像水平和垂直两个方向的投影曲线分别进行小波分解,得到投影曲线的近似表示.在近似曲线中提取字符的特征参数,用这些特征参数构成特征矢量作为SVM训练和分类的基本参数,再将特征矢量输入支撑矢量机网络训练,最后通过树型分类识别模型识别字符.实验仿真表明,该字符识别方法的平均准确率为97.15%,平均识别速度为每个字符19.15 ms. To improve the recognition accuracy of the characters on car license plate, a novel method based on support vector machine (SVM) and wavelet decomposition was proposed. The projective curves along the horizontal and vertical directions were obtained from the character images, and were approximated by using wavelet decomposition. The characteristics of the character images were then extracted from the approximated curves, and were taken as the fundamental parameters for SVM training and classification. Characters were classified and recognized by the use of decision-tree classification-recognition model with high recogniton capability. Experimental results show that the average accuracy rate is about 97.15% and the average recognition speed is about 19.15 ms with the proposed method.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第12期2016-2020,共5页 Journal of Zhejiang University:Engineering Science
关键词 支撑向量机 小波 字符识别 SVM wavelet character recognition
  • 相关文献

参考文献4

  • 1杨健,杨静宇,高建贞.基于并行特征组合与广义K-L变换的字符识别[J].软件学报,2003,14(3):490-495. 被引量:18
  • 2MISHRA R R. Self organizing fuzzy neural network an application to character recognition[A]. The 9th International Conference on Neural Information Processing[C].[S. l]:IEEE, 2002, (5): 2640 - 2644. 被引量:1
  • 3VAPNIK V N. The nature of statistical learning theory[M]. New York:Springer Verlag, 1995. 被引量:1
  • 4CHANG C C, LIN C J. Training nu-support vector regression:theory and algorithms[J]. Neural Computation, 2002,14:1959 - 1977. 被引量:1

二级参考文献2

共引文献17

同被引文献68

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部