期刊文献+

一种基于距离的增量聚类算法 被引量:3

Incremental distance cluster arithmetic
下载PDF
导出
摘要 为了加快传统聚类方法的计算速度,提高实际工作的效率,在传统层次聚类算法基础上,探讨了一种基于距离的增量聚类算法,并应用于粮食智能决策支持系统中。算法在保持层次聚类优点的基础上,利用旧的聚类结果提高聚类速度,根据用户需要在聚类精度和聚类速度方面选取一个适当的平衡点,有效地提高了聚类分析的效率。由此得出结论:可以利用旧的历史数据提高分析效率,缩短实际业务中的统计计算时间。 To make traditional cluster arithmetic work faster and improve work efficiency,an incremental distance cluster arithmetic based on traditional level cluster arithmetic was realized and used in the grain enterprise intelligent decision-support system. It can hold the benefit of level cluster, make use of old cluster result to increase the cluster speed and control cluster quality and speed according to customers' need to improve efficiency of cluster analysis. In conclusion, old data can be used to improve analysis efficiency and make the calculation time shorter than before.
出处 《解放军理工大学学报(自然科学版)》 EI 2005年第6期537-540,共4页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60073039 60273080) 吉林省科技发展计划资助项目(20020306) 吉林大学创新基金资助项目
关键词 增量聚类 层次聚类 决策支持系统 数据挖掘 incremental cluster level cluster decision-support system data mining
  • 相关文献

参考文献4

二级参考文献5

  • 1Ester. M. Kriegel, H.-P, Sander, J.et al. A density-based algorithm for discovering clusters in large spatial databases withnoise. In:Simoudis. E.. Han J., Fayyad, U.M., eds. Proceedings of the 2nd InternationalConference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996.226-231. 被引量:1
  • 2Zhou. B. Cheung, D., Kao, B. A fast algorithm for density-based clustering. In:Zhong, N.. Zhou, L., eds. Methodologies for Knowledge Discovery and Data Mining, the 3rdPacific-Asia Conference. Berlin: Springer, 1999. 338~349. 被引量:1
  • 3Agrawal. R.. Gehrke J., Gunopolos, D., Raghavan, P. Automatic subspace clusteringof high dimensional data for data mining application. In: Haas, L.M.. Tiwary, A., eds.Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle.Washington, USA: ACM Press, 1998.94~105. 被引量:1
  • 4Schikuta. E. Grid clustering: an efficient hierarchical clustering method for verylarge data sets. In: Proceedings of the 13th International Conference on PatternRecognition. IEEE Computer Society Press, 1996. 101 ~105. 被引量:1
  • 5Ester. M. Kriegel, H.-P. Sander, J. et. al. Incremental clustering for mining in adata warehousing environment. In: Gupta, A.,Shmueli. O., Widom. J., eds. Proceedings ofthe 24th International Conference on Very Large Data Bases. New York: Morgan KaufmannPublishers Inc.. 1998. 323-333. 被引量:1

共引文献43

同被引文献24

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部