摘要
在裂纹绝缘与应力自由的条件下,证明了考虑压电效应与惯性效应的广义压电动态■积分与围道Γ的选择无关,这一特性称为广义压电动态■积分的守恒性。若所有电场量为零,广义压电动态■积分变为断裂动力学中的■积分。在线弹性情况下,导出了压电动态■积分与KⅢ(t)的关系。以压电陶瓷(BaTiO3)板中央有限裂纹对入射反平面剪切谐波的散射为例,给出了规范化动应力强度因子K-Ⅲ(t)随规范化圆频率-ω的变化曲线。研究结果表明在该曲线上存在峰值与谷值;当ω-→1时,(K-Ⅲ)max=1.372,该峰值比其相应的静态值高27%,因此,惯性效应不能忽略;当-ω→3时,(K-Ⅲ)min=0.247;当ω-→0时,K-Ⅲ→1,即动应力强度因子趋近于相应的静态值。
The generalized piezoelectric dynamic J^ is unaffected by the selection of contour, if the surface of the crack. Therefore, the generalized integral including piezoelectric and inertia effects conditions σinnj=0, Djnj=0 are satisfied on the piezoelectric dynamic J^ integral equation can be called the path-independent of the generalized piezoelectric dynamic J^ integral of the contour Γ. If all the electrical field quantities are made to vanish, then equation (1) reduces to the dynamic J- integral of fracture mechanics. For example, the scattering of an incident anti-plane shear wave by a finite crack in an infinite piezoelectric ceramics (BaTiO3) plate is studied. The curve of variation of normalized DSIF K^-Ⅲ against normalized circular frequency ω^- is plotted. The results show that the curve of variation of K^-Ⅲ against ω^- has peak value and minimum value. As ω^-→1, (K^Ⅲ)max =1. 372. This peak value (K^-Ⅲ)max is about 27% larger than corresponding static value. Therefore, inertia effect cannot be omitted. As ω^-→3, (K^-Ⅲ)min=0. 247. As ω^-→0, K^-Ⅲ→1. This is to say, the mode-Ⅲ dynamic stress intensity factor approaches to corresponding static value.
出处
《中南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2005年第6期1084-1088,共5页
Journal of Central South University:Science and Technology
基金
国家自然科学基金资助项目(10272043)
关键词
动态J^积分
守恒性
反平面剪切波散射
动应力强度因子
dynamic J^-integral
conservation
scattering of anti-plane shear wave
dynamic stress intensity factor