期刊文献+

非正交曲线坐标系下的流场计算

The computation of fluid field under nonorthogonal curvilinear coordinate systems
下载PDF
导出
摘要 利用生成贴体坐标的代数法将一梯形区域从物理平面转化到计算平面,将物理区域中的边界条件向计算区域进行了一一对应转换.运用贴体坐标转换方程对其流场控制方程进行离散和求解,生成了梯形区域物理平面的贴体网格,同时应用非正交曲线坐标系对任一角度的梯形区域的流场进行模拟计算.并在同一条件下与正交坐标系所模拟的流场进行比较,说明了非正交曲线坐标方法的正确性和可行性. Using the algebra method of building body-fitted coordinate, a trapezitorm region from physical domain to computational domain was transformed and the boundary conditions were also transformed from physical domain to computational domain accordingly. The body-fitted trans- formation equation was used to disperse and compute the dominate equation of fluid field, producing the body-fitted grids of the physical domain of the trapeziform region. Simultaneously, nonorthogonal curvilinear coordinate systems were applied to simulate and compute the fluid field of a random angled trapeziform region. The simulated fluid was compared with that gained by orthogonal curvilinear coordinate systems under the same condition. So the validity and feasibility of nonorthogonal curvilinear coordinate methods were illuminated.
出处 《包头钢铁学院学报》 2005年第3期203-206,223,共5页 Journal of Baotou University of Iron and Steel Technology
基金 国家自然科学基金上海宝钢集团公司资助项目(50474082)
关键词 非正交 曲线坐标 流场计算 nonorthogonal curvilinear coordinate fluid field computation
  • 相关文献

参考文献4

二级参考文献8

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部