摘要
讨论了分配格L上的秩-1矩阵分解为向量叉积的特点,然后得到对L上的任一矩阵A,只要,则在A中插入或去掉元素都是λ的行(或列)所得矩阵与A有相同的Schein秩.
This paper discusses the specific property of a rank-1 matrix over distributive lattice Lwhen it is decomposed into cross-vector. It is also proven that,if a matrix A over L has a row(or column) whose entries are all λ (where ),then deleting the row (or column) fromA does not change the Schein rank of A.
出处
《内蒙古工业大学学报(自然科学版)》
1996年第2期1-3,共3页
Journal of Inner Mongolia University of Technology:Natural Science Edition
基金
国家及内蒙古工业大学科研基金