期刊文献+

实体肿瘤内毛细血管-跨毛细血管壁-组织间质相耦合的不定常流动及对药物传递的影响 被引量:2

Intracapillary-transcapillary-interstitial unsteady coupling flow in solid tumor and its influence on drug delivery
下载PDF
导出
摘要 目的研究实体肿瘤内毛细血管-跨毛细血管壁-组织间质内流体不定常耦合流动对流场的影响及对药物传递的促进作用。方法建立耦合流动模型,毛细血管内流动遵循Navier-Stokes方程;跨血管壁和间质内组织液流动遵循Starling定律和Darcy定律。在边值阶跃增压和叠加脉动流两种情况下研究不定常流动,半解析半数值求解。结果相对于毛细血管,组织间质内压强传递具有滞后性。血管内流动改变引起肿瘤组织结构的动态调整,该过程中跨壁压差与组织间质压梯度均有所提高。结论毛细血管边值阶跃增压产生的不定常流动有助于药物从管壁渗出进入组织内部,也有助于其在组织内扩散。 Objective To study the influence of intracapillary-transcapillary-interstitial unsteady coupling flow on the whole flow field and drug delivery in solid tumor. Methods Develop coupled fluid flow model. Intracapillary flow is govemed by Navier-Stokes equations, transcapillary and interstitial fluid flow are described by Starling's law and Darcy's law respectively. Simulate the unsteady flow caused by step increase of capillary pressure and pulsating analytically and numerically. ResuIts Relative to intracapillary, transport of pressure in the interstitium has hysteresis effect. The change of intracapillary flow will arise transient redistribution of interstitial fluid, and as a result, transeapillary pressure and interstitial pressure gradient will be increased. ConcIusion Unsteady flow could increase transmural transport of drug and convective diffusion in tumor tissues as well.
出处 《医用生物力学》 EI CAS CSCD 2005年第4期204-211,共8页 Journal of Medical Biomechanics
基金 国家自然科学基金(NO.10372026)
关键词 实体肿瘤 耦合流动 不定常流动 药物传递吸收 Solid tumor Coupled fluid flow Unsteady flow Drug delivery
  • 相关文献

参考文献12

  • 1Baxter LT,Jain RK.Transport of fluid and macromolecules in tumors.I.Role of interstitial pressure and convection[J].Microvasc Res,1989,37:77-104. 被引量:1
  • 2Boucher Y,Baxter LT,Jain RK.Interstitial pressure gradient in tissue-isolated and subcutaneous tumors:Implications for therapy[J].Cancer Res,1990 50:.4478-4484. 被引量:1
  • 3DiResta GR,Lee J,Larson SM,et al.Characterization of neuroblastoma xenograft in rat flank.I.Growth,interstitial fluid pressure,and interstitial fluid velocity distribution profile[J].Microvasc Res,1993,46:158-177. 被引量:1
  • 4Netti PA,Baxter LT,Boucher Y,et al.Time-dependent behavior of interstitial fluid pressure in solid tumors:implication for drug delivery[J].Cancer Res,1995,55:5451. 被引量:1
  • 5Netti PA,Baxter LT,Boucher Y.Macro-and microscopic fluid transport in living tissues:application to solid tumors[J].AIChE J,1997,43,(3):818-834. 被引量:1
  • 6Baxter LT,Jain RK.Transport of fluid and macromolecules in tumors.Ⅳ.A microscopic model of the perivascular distribution[J].Microvas Res,1991,41:252-272. 被引量:1
  • 7Netti PA,Roberge S,Boucher Y,et al.Effect of transvascular fluid exchange on pressure-flow relationship in tumors:A proposed mechanism for tumor blood flow heterogeneity[J].Micovasc Res,1996,52:27-46. 被引量:1
  • 8Baish JW,Netti PA,Jain RK.Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors[J].Microvas Res,1997,53:128-141. 被引量:1
  • 9Milosevic MF,Fyles AW,Hill RP.The relationship between elevated interstitial fluid pressure and blood flow in tumors:a bioengineering analysis[J].Int J Radiation Oncology Biol Phys,1999,43 (5):1111-1123. 被引量:1
  • 10Stoher M,Boucher Y,Stangassinger M,et al.Oncotic pressure in human tumor xenografts[C].In Proceeding of 86th annual meeting of the American Cancer Society,March 18-22,Toronto,Ontario,Canada.1995,Vol.36,p.311,Abstract No.1852. 被引量:1

共引文献7

同被引文献25

  • 1高昊,许世雄,蔡颖,M.W.Collins.肿瘤血管生成的二维数值模拟[J].力学季刊,2005,26(3):468-471. 被引量:14
  • 2吴洁,许世雄,M.W.Collins.实体肿瘤内毛细血管—跨毛细血管壁—组织间质流体耦合流动的解析解[J].上海生物医学工程,2005,26(4):191-197. 被引量:1
  • 3孙燕 周际昌.临床肿瘤内科手册[M].北京:人民卫生出版社,2003.586-591. 被引量:387
  • 4Baxter LT,Jain RK.Transport of fluid and macromolecules in tumors.I.Role of interstitial pressure and convection[J].Microvasc Res,1989,37:77-104. 被引量:1
  • 5Anderson ARA,Chaplain MAJ.Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis[J].Bulletin of Mathematical Biology,1998,60:857-900. 被引量:1
  • 6McDougall SR,Anderson ARA,Chaplain MAJ.Mathematical Modeling of Flow through Vascular Network:Implication for Tumor-induced Angiogenesis Chemotherapy Strategies[J].Bulletin Mathematical Biology,2002,64:673-702. 被引量:1
  • 7Holmes MJ,Sleeman BD.A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects[J].J theor Biol,2000,202:95-112. 被引量:1
  • 8Plank M J,Sleeman BD.A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies [J].Mathematical Medicine and Biology,2003,20:135-181. 被引量:1
  • 9Sté phanou A,McDougall SR,Anderson ARA.et al.Mathematical modelling of flow in 2D and 3D vascular networks:applications to anti-angiogenic and chemotherapeutic drug strategies [J].Mathematical and Computer Modelling,2005,41:1137-1156. 被引量:1
  • 10Netti PA,Roberge S,Boucher Y,et al.Effect of transvascular fluid exchange on pressure-flow relationship in tumors:A proposed mechanism for tumor blood flow heterogeneity[J].Microvasc Res,1996,52:27-46. 被引量:1

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部