期刊文献+

四态叠加多模泛函叠加态光场的奇次振幅压缩

Odd-number-power amplitude squeezing of a four-state superposition multimode functional superposition state light field
下载PDF
导出
摘要 目的研究四态叠加多模泛函叠加态光场的高次振幅压缩特性。方法利用量子力学中的态叠加原理,构造了由多模泛函偶相干态和多模泛函复共轭偶相干态线性叠加组成的一类典型的多模泛函叠加态光场|ψ2e(fj)〉q;利用多模压缩态理论,研究态|ψ2e(fj)〉q的高次奇数次振幅压缩特性。结果态|ψ2e(fj)〉q是一类典型的非经典光场,当压缩次数为奇数时,在一定的条件下,态|ψ2e(fj)〉q的两正交相位分量总可呈现不同程度的互补对称的奇数次振幅压缩效应。结论光场经典强度的空间分布函数对态|ψ2e(fj)〉q的压缩程度、压缩深度会产生直接影响,随着各模经典强度空间分布函数的变化,态|ψ2e(fj)〉q中各不同模所呈现的振幅压缩现象在空间的分布是非均匀、非线性和各向异性的。 Aim To study the higher-power amplitude squeezing properties of the four-state superposition multimofunctional even coherent state and multimode functional complex conjugation even coherent state. By using the theory of multimode squeezed, the high-power odd-number-power amplitude squeezing properties of the state |ψ2e(fj)〉q are studied. Results the state |ψ2e(fj)〉q is a typical non-classical light field, when squeezing number is an odd number, under some certain and fixed conditions, the two components of the state |ψ2e(fj)〉qCan present different degree and symmetry odd-power amplitude squeezing effect. Conclusion The spatial distribution function of the classical intensity of the light field has a direct influence upon the squeezed amplitude, the squeezed depth of generalized nonlinear 2p + 1-th-power amplitude squeezing of the state squeezed the odd-power amplitude squeezing properties are asymmetrical, nonlinear and anisotropic with the spatial distribution function of classical intensity of each mode of the state |ψ2e(fj)〉q degree and the q. Especially, change of the
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期711-716,共6页 Journal of Northwest University(Natural Science Edition)
基金 陕西省自然科学基金资助项目(2001SL04) 陕西省科技攻关基金资助项目(2002K05-G9)
关键词 多模泛函偶相干态 多模泛函复共轭偶相干态 多模泛函叠加态光场 高次振幅压缩 multimode functional even coherent state multimode functional complex conjugation even coherent state multimode functional superposition state higher-power amplitude squeezing
  • 相关文献

参考文献15

二级参考文献97

共引文献219

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部