期刊文献+

广义Witt型Lie双代数 被引量:2

原文传递
导出
摘要 给出了广义Witt型Lie代数W上定义的Lie双代数的分类,证明了这样 的Lie双代数是余边沿上三角的Lie双代数,并且证明了1阶上同调群H1(W,W(?) W)是平凡的.
出处 《中国科学(A辑)》 CSCD 北大核心 2005年第12期1333-1346,共14页 Science in China(Series A)
基金 国家自然科学基金(批准号:10471091) 中国科学技术大学"百人计划" 教育部跨世纪优秀人才培养计划资助项目
  • 相关文献

参考文献11

  • 1Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math,1994, 107:365-392. 被引量:1
  • 2Ng S H, Taft E J. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Algebra, 2000, 151:67-88. 被引量:1
  • 3Nichols W D. The structure of the dual Lie coalgebra of the Witt algebra. J Pure Appl Algebra, 1990, 68:359-364. 被引量:1
  • 4Taft E J. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Algebra, 1993, 87:301-312. 被引量:1
  • 5Dokovic D, Zhao Kaiming. Derivations, isomorphisms and second cohomology of generalized Witt algebras. Trans Amer Math Soc, 1998, 350:643-664. 被引量:1
  • 6Passman D. New simple infinite dimensional Lie algebras. J Algebra, 1998, 206:682-692. 被引量:1
  • 7Su Yucai, Xu Xiaoping, Zhang Hechun. Derivation-simple algebras and the structures of Lie algebras of Witt type. J Algebra, 2000, 233:642-662. 被引量:1
  • 8Su Yucai, Zhao Kaiming. The second cohomology group of generalized of Witt type Lie algebras and certain representations. Comm Algebra, 2002, 30(7): 3285-3309. 被引量:1
  • 9Xu Xiaoping. New generalized simple Lie algebras of Cartan type over a field with characteristic 0. J Algebra, 2000, 224:23-58. 被引量:1
  • 10Drinfeld V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians. Providence: Amer Math Soc, 1987. 798-820. 被引量:1

同被引文献26

  • 1辛斌,宋光艾,苏育才.广义Hamilton Lie双代数[J].中国科学(A辑),2007,37(5):617-628. 被引量:1
  • 2Drinfel'd V. Quantum groups. In: Proceedings ICM Berkeley. Providence, RI: Amer Math Soc, 1987, 789-820. 被引量:1
  • 3Block R E. Commutative Hopf algebras, Lie coalgebras, and divided powers. J Algebra, 1985, 96:275-306. 被引量:1
  • 4Block R E, Leroux P. Generalized dual coalgebras of algebras, with applications to cofree coalgebras. J Pure Appl Algebra, 1985, 36:15-21. 被引量:1
  • 5Diarra B. On the definition of the dual Lie coalgebra of a Lie algebra. Publ Mat, 1995, 39:349-354. 被引量:1
  • 6Griffing G. The dual coalgebra of certain infinite-dimensional Lie algebras. Comm Algebra, 2002, 30:5715-5724. 被引量:1
  • 7Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge University Press, 1995. 被引量:1
  • 8Michaelis W. A class of infinite dimensional Lie bialgebras containing the Virasoro algebras. Adv Math, 1994, 107: 365-392. 被引量:1
  • 9Michaelis W. The dual Lie bialgebra of a Lie bialgebra. In: Modular Interfaces. Providence, RI: Amer Math Soc, 1997, 81-93. 被引量:1
  • 10Montaner F, Stolin A, Zelmanov E. Classification of Lie bialgebras over current algebras. Selecta Math (NS), 2010, 16:935-962. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部