摘要
研究了全蕴涵三I算法及几种常用蕴涵的三I MP解的还原性.利用新构造的函数Ψx(t)=(A(x)→B(y))→(A*(x)→t),将三I MP规则给予定量描述,得到了FMP(Fuzzy ModusPonens)问题的构造性方法.给出Zadeh型三I MP解,修正了已有结果.将这一构造性方法推广,得到α-三I MP问题的构造性方法,并给出R0型、Lukasiewicz型和Zadeh型三I MP解具有还原性的充要条件.
It is studied that focuses on triple I MP(Modus Ponens) algorithm and reductivity of triple I MP solution, constructs a new function Ψx(t)=(A(x)→B(y))→(A^*(x)→t) , and an equivalent and quantitative description of the rule of triple I MP is given. Then the constructive triple I MP algorithm is obtained and so is constructive α-triple I MP algorithm by generalization. In addition, Zadeh triple I MP solution, which improves the existing result, is acquired. The necessary and sufficient conditions on that Ro, Lukasiewicz and Zadeh triple I MP solutions possess reductivity are given respectively.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第4期1-5,共5页
Journal of Shaanxi Normal University:Natural Science Edition
基金
国家自然科学基金重点资助项目(10331010)
关键词
三I
MP解
α-三IMP解
构造性
P-还原性
还原性
solution of triple IMP
solution of α-triple I MP
constructivity
P-reductivity
reductivity