期刊文献+

改进的邻域支持向量解算法

An Improved Vicinal SV Algorithm
下载PDF
导出
摘要 针对实施邻域风险最小化原则的邻域支持向量解算法,根据被错分样本一定是支持向量提出一种利用支持向量删除训练样本中难学习样本的修剪算法;依据最大似然原则对已有的高斯邻域函数参数取值方法进行改进.初步实验表明,训练样本的修剪与邻域函数参数取值方法的改进可明显提高邻域支持向量解算法的泛化能力,比SVM测试准确率提高0.5%左右. Two improvements are introduced into vicinal-risk-minimization based support vector algorithm. Since the misclassified samples must be support vectors, a scheme for pruning hardto-learn samples from the training set based on support vectors is presented. The parameter's determination of Gaussian vicinal function is proposed to be modified, based on the maximum likelihood criterion. Preliminary experimental results show that the pruning scheme and improvement of the parameter's determination of vicinal function much improved Vicinal SV algorithm's generality, and can outperform SVM by about 0. 5% in test accuracy.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2005年第11期967-970,共4页 Transactions of Beijing Institute of Technology
基金 国家"九七三"计划项目(G1998030414)
关键词 邻域支持向量解 修剪样本 高斯函数 vicinal SVM pruning samples gaussian function
  • 相关文献

参考文献7

  • 1Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1998. 被引量:1
  • 2Chapelle O, Weston J, Botton L, et al. Vicinal risk minimization[J]. Advances in Neural Information Processing Systems, 2001,13:416-422. 被引量:1
  • 3Alexei Pozdnoukhov, Samy Bengio. From samples to objects in kernel methods[EB/OL]. ftp:∥ftp.idiap.ch/pub/reports/2003/rr03-29.pdf,2003-03-29/2004-12-20. 被引量:1
  • 4Vapnik V. Statistical learning theory[M]. New York: J Wiley, 1998. 被引量:1
  • 5李红莲,王春花,袁保宗.一种改进的支持向量机NN-SVM[J].计算机学报,2003,26(8):1015-1020. 被引量:71
  • 6Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge:Cambridge University Press, 2000. 被引量:1
  • 7Rtsch G. Benchmark data sets[EB/OL]. http:∥ida.first.fhg.de/projects/bench, 1999-09-12/2004-12-20. 被引量:1

二级参考文献8

  • 1Hearst M A, Dumais S T, Osman E, Platt J, Scholkopf B.Support Vector Machines. IEEE Intelligent Systems, 1998, 13(4) : 18-28. 被引量:1
  • 2Ke Hai-Xin,Zhang Xue-Gong. Editing support vector machines.In: Proceedings of International Joint Conference on Neural Networks, Washington, USA, 2001, 2:1464-1467. 被引量:1
  • 3Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988-999. 被引量:1
  • 4Vapnik V N. Statistical Learning Theory. 2nd ed. New York:Springer-Verlag : 1999. 被引量:1
  • 5Klaus-Robert Mailer, Sebastian Mika, Gunnar Raetsch, Koji Tsuda, and Bernhard Schoelkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12 (2): 181-201. 被引量:1
  • 6Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167. 被引量:1
  • 7张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2268
  • 8张鸿宾,孙广煜.近邻法参考样本集的最优选择[J].电子学报,2000,28(11):16-21. 被引量:8

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部