期刊文献+

面向色织生产过程的整经轴数智能预测算法 被引量:6

Intelligent Prediction Algorithm of Trim Beam Number in Colored Textile Manufacturing Process
下载PDF
导出
摘要 整经轴数是色织生产中由整经工艺确定的一个品种内待加工的整经轴数目,该参数是制定色织生产作业计划所需的重要特征量。由于整经工艺制定过程非常复杂,其通常需要较长时间才能完成,因而该参数在调度时难以有效获取。为解决复杂色织生产过程调度所需的整经轴数预测问题,提出了一种智能预测算法。该算法针对实际问题特点,将支持向量机与神经网络技术相结合,由支持向量机对与整经轴数相关的参数进行特征提取,并将特征提取后的特征属性作为神经网络的输入,相应的特征属性权重被用以指导神经网络的学习过程。数值计算及实际制造企业应用效果表明该算法是有效的,能满足面向实际色织生产过程的整经轴数预测需要。 The trim beam number is the number of trim beams to be processed inside a pattern, which is decided by the trim technique. The parameter is important in the production planning of the colored weaving manufacturing process. To the difficulty of obtaining the trim beam number before scheduling, a predictive algorithm based on the combination of artificial neural network (ANN) and support vector machine (SVM) is presented. SVM is adopted for the feature selection while ANN for the learning process guided by the output of SVM. Numerical com- putational results from the practical manufacturing production data show that the proposed algorithm is effective and can satisfy the requirements of the production process.
出处 《控制工程》 CSCD 2005年第6期523-526,共4页 Control Engineering of China
基金 国家重点基础研究计划资助项目(2002CB312200) 国家自然科学基金资助项目(60004010 60274045 60443009)
关键词 支持向量机 神经网络 整经轴数 预测 调度 support vector machine artificial neural network trim beam number prediction scheduling
  • 相关文献

参考文献8

  • 1[1]Exner O.How to get wrong results from good experimental data:a survey of incorrect applications of regression[J].Journal of Physical Organic Chemistry,1997,10 (11):797-813. 被引量:1
  • 2张颖,刘艳秋编著..软计算方法[M].北京:科学出版社,2002:209.
  • 3高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报,1998,21(1):80-86. 被引量:242
  • 4[4]Duda R O,Hart P E,Stork D G.Pattern classification[M].New York:John Wiley & Sons,2001. 被引量:1
  • 5[5]Vapnik V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995. 被引量:1
  • 6[6]Gunn S R.Support vector machines for classification and regression[R].Southapton:Image Speech and Intelligent Systems Research Group,University of Southampton,1997. 被引量:1
  • 7[7]Barzilay Brailovsky V L.On domain knowledge and feature selection using a support vector machine[J].Pattern Recognition Letters,1999,20(5):475-484. 被引量:1
  • 8[8]Guyon I,Weston J,Barnhill S,et al.Gene selection for cancer classification using support vector machines[J].Machine Learning,2002,46(1):389-422. 被引量:1

二级参考文献13

共引文献241

同被引文献57

引证文献6

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部