期刊文献+

风险资产组合的均值—M有效前沿及其实证分析 被引量:5

The Mean-Spectral Measures of Risk Efficient Frontier of Portfolio and Its Empirical Test
下载PDF
导出
摘要 本文基于由Carlo Acerbi(2002)提出的一类一致性风险度量—谱风险测度M,给出了谱风险测度的一些性质及构造谱密度的一种具体形式;重点讨论了正态情形下风险资产组合的均值—M有效前沿,探讨了其经济含义,并与经典的均值—方差有效前沿进行了对比研究,获得了若干深入的结果。由于期望短缺ES是特殊的谱风险测度,因此其对应的有效前沿是本文结果的特例。最后,本文利用前面的结论对深市和沪市的风险资产组合的均值—M有效前沿作了实证分析。 Based on the Spectral Measures of Risk (M) -a new approach of coherent risk measures introduced by Acerbi(2002), this paper discusses some properties of Spectral Measures of Risk and one especial cases of this kind of risk,principally studies the Mean- M efficient frontier of portfolio and examines the economic implications under the assumption of normality of risk securities. Moreover, the comparison between the Mean- M efficient frontier, the Mean - Variance efficient frontier and the Mean - ES efficient frontier is provided. Some interesting and practical results are obtained. At the same time,as a generic case, the result of ES accords with that of M corresponsively. Finally,this paper gives the Mean- M efficient frontier of portfolio selected from Shanghai and Shenzhen stock markets using foregoing conclusion.
出处 《中国管理科学》 CSSCI 2005年第5期6-11,共6页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70071012) 广西科学研究与技术开发资助项目(0385008)
关键词 一致性风险度量 谱风险测度 谱风险 有效前沿 coherent risk measures spectral measures of risk risk spectrum efficient frontier
  • 相关文献

参考文献15

  • 1Artzner P., Delbaen, F., Eber J. M and Heath D. Thinking Coherently[ J ]. Risk, 1997,10:68 - 71. 被引量:1
  • 2Artzner P.,Delbaen F.,Eber J. M and Heath D. Coherent measures of risk[J ]. Mathematical Finance, 1999,9: 203 -228. 被引量:1
  • 3Acerbi C., Nordio C., and Sirtori C. Expected shortfall as a tool for financial risk management [ Z] .Working paper,2001. www. gloriamundi. org. 被引量:1
  • 4Acerbi C., Tasche D. On the Coherence of Expected Shortfall[ Z ]. Working paper, 2001. www. gloriamundi. org/var/pub. html. 被引量:1
  • 5Rockafellar R. T. and Uryasev S. Optimization of conditional Value - at - Risk [ J ]. Journal of Risk, 2000,2 (3): 21 -42. 被引量:1
  • 6Rockafellar R.T. and S. Uryasev. Conditional Value - at Risk for General Loss Distributions[ J ]. Journal of Banking and Finance, 2002,26:1443 - 1471. (www.ise.ufl.edu/uryasev/cvar2 - jbf. pdf). 被引量:1
  • 7O. Scaillet. Nonparametric estimation and sensitivity analysis of expected shortfall [ J ]. Mathematical Finance, 2004,14:115 - 129. 被引量:1
  • 8刘小茂,李楚霖,王建华.风险资产组合的均值—CVaR有效前沿(Ⅰ)[J].管理工程学报,2003,17(1):29-33. 被引量:53
  • 9刘小茂,李楚霖,王建华.风险资产组合的均值—CVaR有效前沿(Ⅱ)[J].管理工程学报,2005,19(1):1-5. 被引量:31
  • 10刘小茂,李楚霖.资产组合的CVaR风险的敏感度分析[J].数学物理学报(A辑),2004,24(4):442-448. 被引量:16

二级参考文献20

  • 1Jorion P 张海鱼等译.VAR:风险价值-金融风险管理新标准[M].北京:中信出版社,2000.. 被引量:1
  • 2Alexander G.J.,Baptista A.M.Economic implications of using a Mean-VaR model for portfolio selection:a comparison with Mean-Variance analysis[R].Working Paper.University of Minnesota,2000. 被引量:1
  • 3Huang C,Litzenberger R.Foundation for financial economics[M].N J:Prentice-Hall,1988,66~67. 被引量:1
  • 4Jorion P. How Informative Are Value-at-Risk Disclosures? www.gsm.uci.du/jorion, 2001 被引量:1
  • 5Irina N. Value at Risk: Recent Advances.www.gloriamundi.org, 1999 被引量:1
  • 6Duffie D, Pan J. An overview of value at risk. Journal of Derivatives, 1997, 4(1): 7-49 被引量:1
  • 7Morgan J P. Risk Metrics: Technical Document. www.riskmetrics.com/rmcovv.html, 1996 被引量:1
  • 8Robert A Jarrow, Stuart M Turnbull. The intersection of market and credit risk. Journal of Banking & Finance, 2000, 24(1-2): 271-299 被引量:1
  • 9Gourieroux C, Laurent J P, Scaillet O. Sensitivity analysis of values at risk. Journal of Empirical Finance, 2000, 7(3-4): 225-245 被引量:1
  • 10Artzner P, Delbaen F, Eber J M, Heath D. Coherent measures of risk. Mathematical Finance, 1999, 9(3): 203-228 被引量:1

共引文献83

同被引文献53

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部