摘要
对Chebyshev多项式的定义进行了扩展,形成了有限域ZP上的Chebyshev多项式.利用有限域上Chebyshev多项式的单向性和半群特性,构造了一种新的会话密钥协商算法.该算法具有会话密钥协商的公平性.与Diffie-Hellman算法相比,该算法的运行无需寻找有限域中的本原元,只需选用普通的整数即可,且算法的破译更为复杂.对算法的安全性进行了分析,指出任何在实数域上具有半群特性的代数多项式都可用来构造会话密钥协商算法.
After expanding the definition of Chebyshev polynomials, the Chebyshev polynomials on finite fields Zp are formed. Using their one-way and semi-group properties on the finite fields, a novel session key agreement algorithm is presented. The algorithm has the fairness of the session key agreement. Compared with Diffie-Hellman algorithm, the algorithm does not need to look for primitive element in running, but select common integer number. And the attack to the algorithm is more complex. Finally, the security of the session key agreement algorithm is analyzed and it is concluded that any polynomials, which have semi-group property on real fields, can be used to construct session key agreement algorithm.
出处
《高技术通讯》
CAS
CSCD
北大核心
2005年第11期13-16,共4页
Chinese High Technology Letters
基金
新材料领域项目,中国科学院资助项目