期刊文献+

一种新硬阈值算法在临场感系统中的应用

A New Image De-noising Algorithm Based on Hard-threshold Applying on Tele-Presence System
下载PDF
导出
摘要 论文在分析了硬阈值算法的优点与不足之处的基础上,提出了一种新的硬阈值图像去噪算法,并将此算法成功运用到临场感系统中。该算法不仅继承了硬阈值算法处理误差较小、图像边缘保持良好和实现简单的优点,而且针对原始算法阈值划分粗糙、光滑度损失等缺点,引入了调整因子和相邻窗口等方法降低阈值估计风险和提高图像光滑度。理论证明及实验结果表明,新算法是一种高效的实时去噪算法,其不仅具有良好的视觉效果和较低计算复杂度,而且在相同噪声情况下,新算法的MSE、PSNR等指标均优于硬阈值算法。 In this paper,a new hard threshold algorithm is proposed after analyzing the advantages and disadvantages of the traditional hard threshold algorithm,and it applies successfully on the tele-presence system.The new algorithm not only includes the advantage of the traditional in which less error,good image edge,and that is implemented easily,but also reduce the risk of threshold estimation and improve the image smoothness,using the methods of adjusting factor and neighbourhood window.The results of the analysis and experiment demonstrate that the new algorithm is a effective real time de-noising method,not only has the properties of good vision effect and less complexity,but also performs better than that of traditional algorithm in the aspects of MSE,PSNR etc under the basis of the same noise.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第33期83-85,94,共4页 Computer Engineering and Applications
关键词 临场感 小波 闽值硬阚值算法 tele-presence,wavelet,threshold,hard threshold algorithm
  • 相关文献

参考文献12

  • 1艾海舟,张朋飞,何克忠,江潍,张军宇.室外移动机器人的视觉临场感系统[J].机器人,2000,22(1):28-32. 被引量:13
  • 2谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 3S Grace Chang,Bin Yu,Martin Vetterli.Adaptive wavelet thresholding for image denoising and compression[J].IEEE Transactions on Image Processing, 2000; 9 ( 9 ): 1532~1546. 被引量:1
  • 4Stepien J,Zielinshi T,Rumian R.Image denoising using scale-adaptive lifting schemes[J].Image Prccessing,2000;3:288~191. 被引量:1
  • 5Scharcanski J,Jung C R,Clarke R T.Spatially adaptive multiplicative noise image denoising technique[J].IEEE Transactions on Image Processing, 2002; 11 (9): 1092~1101. 被引量:1
  • 6Guoliang Fan,Xiang-Gen Xia.Image denoising using a local contextual hidden Markov model in the wavelet domain[J].Signal Processing Letters, IEEE ,2001 ;8(5 ): 125~128. 被引量:1
  • 7Zhaohui Cai,Tee Hiang Cheng,Chao Lu et al.Efficient wavelet-based image denoising algorithm[J].Electronics Letters,2001 ;37( 11 ) :683~685. 被引量:1
  • 8Kumar B A,Srinivasan M,Annadurai S. A wavelet based image denoising using statistical sampler for Bayesian estimator[C].In:TENCON 2003 Conference on Convergent Technologies for Asia-Pacific Region ,2003:21~25. 被引量:1
  • 9T T Cai ,B W Silberman.Incorporating information on neighbouring coefficients into wavelet estimation.Sankhya[J].the Indian Journal of Statistics, 2001; 63:127~148. 被引量:1
  • 10G Y Chen,T D Bui.Mutiwavelet Denoising using neighbouring coefficients[J].IEEE signal processing letters,2003;10(7):211~214. 被引量:1

二级参考文献71

  • 1[1]Rodrigues C C. An Industrial Application of Telepresence Technology:Productivity Improvements in Material Handling Tasks.ICRA'95,1995.2115-2120 被引量:1
  • 2[2]Grudic G Z.Human-to-robot Skill Transfer Via Teleoperation.ICRA'95,1995,2109-2114 被引量:1
  • 3[3]Barshan B,Durrant-Whyte H F.Inertial Navigation Systems for Mobile Robots.ICRA'95,1995,328-342 被引量:1
  • 4[4]Kim W S,Bejczy A K.Demonstration of a High-fidelity Predictive/Preview Display Technique for Telerobotic Servicing in Space.IEEE Trans.on PAMI,1993,9(5):698-704 被引量:1
  • 5[5]Hirzinger G, Brunner B.Sensor-based Space Robotics-ROTEX and its Telerobotic Features.IEEE Trans,On Robotics and Automation,1993,9(5):649-663 被引量:1
  • 6[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730. 被引量:1
  • 7[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310. 被引量:1
  • 8[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882. 被引量:1
  • 9[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543. 被引量:1
  • 10[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85. 被引量:1

共引文献276

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部