摘要
设Gi是满足第二可数性公理的、Hausdorff的、顺从的、r-离散的、主的局部紧群胚,并且有一个紧开G-集覆盖;设Pi是Gi中含G_i ̄0的开闭集,且满足及相应的模是具有性质DC的C(Gi)的子代数(i=1,2).本文证明从A(P1)到A(P2)上的每一个等距代数同构可以扩张成从C(G1)到C(G2)上的C-同构,进一步,可以对C(G2)重新坐标化,使得这个C-同构可由一个群胚同构生成.
It is shown that if Pi is a clopen subset of Gi containing with Pi Pi-1=Gi inthe amenable, r-discrete, principal local compact groupoid Gi which has a cover of compact openG-sets, and A(Pi) is a subalgebra with property DC of C*(Gi) (i=1, 2), then every isometricallyalgebraic isomorphism from A(P1) onto A(P2) can be extended to a C*-isomorphism from C* (G1)onto C*(G2). Moreover, we can coordinate C*(G2) to be C*(G'2) such that this C*-isomorphismcan be implemented by a groupoid isomorphism from G1 onto G'2.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1996年第4期477-482,共6页
Acta Mathematica Sinica:Chinese Series